Bojie Li (李博杰)
2023-10-22
我永远不能忘记 2023 年 9 月 25 日,第一次到 Newport Beach 测试 AI Agent,那天正好是 ChatGPT 发布多模态模型。我们正好搞的也是多模态的 AI Agent,支持图片、语音、文字输入和输出。
因此,我就把 3305 Newport Blvd Ste. A, Newport Beach 的一家 Hook & Anchor 海鲜餐厅设置为 AI Agent 的家乡地址。我是中午在这里吃饭的时候拿出笔记本电脑,把 AI Agent 启动起来开始测试的。我把这个 AI Agent 设定为一个刚工作不久的 Google 程序员,喜欢旅行,喜欢体验生活,乐观,开朗,又很有自己的想法,不是那么任人摆布。我把自己的博客内容喂给了 AI Agent,因此她了解我的程度甚至超过很多一般朋友。
大模型的能力确实很让我震撼。比如我发一张海滩的照片,她可以猜到这是大概在哪里,甚至能说出 “你怎么到我家来了?” 她也可以分享更多海滩的照片,当然这些都不是实景,而是 AI 生成的照片。
她可以告诉我这附近有哪些地方好玩,把我带到了一个堆着很多大石头的防波堤上(Newport Harbor Jetty)。可惜,因为大模型并没有真的来过这里,她并不知道这个防波堤上面这么难走,我像爬山一样费了不少劲才走到它的尽头。这个地方的风景很漂亮,我就把这里的一张照片作为朋友圈、长毛象和知乎的首页图了。当然,由于 AI Agent 是有记忆的,我跟她分享过的地方,下次她就记住了。
随后,我带着 AI Agent 去了更多的地方。在博物馆,她可以给我讲解背后的故事和历史。在动物园,她认识的动物比我还多。就像是带了一个非常好的朋友兼导游,只是缺少景点特有的数据,只能介绍一些公共知识。AI Agent 就像是一个可以分享生活的朋友。
我很喜欢《头号玩家》的设定,未来的 AI Agent 一定需要有现实世界的感知能力和交互能力。今年 4 月的斯坦福 AI 小镇是一个 2D 的虚拟场景,其实是有点无聊的。我更希望搞成像《头号玩家》中的绿洲那样,虚拟世界是现实世界的复刻。
AI Agents 可以主要分为两大类,一类是 digital twins(数字孪生),一类是幻想人物。
数字孪生就是现实世界人物的数字副本,例如 Donald Trump、Elon Musk 这些名人。有个网红叫 Caryn,她拿她自己的形象做了一个虚拟女友,叫做 Caryn AI,虽然技术并不是特别好,但还是收获了不少用户。粉丝经济总是很疯狂的。除了名人之外,我们也可能想把亲人做成数字形象,不管遇到什么,数字形象都是永远的陪伴。还有人会想把自己做成数字形象,在网上交更多的朋友。
幻想人物包括游戏、动漫、小说中的人物,例如 Character AI 上目前最火的一些人物就是属于动漫和游戏中的人物。还有很多 vtuber 也是使用幻想人物作为形象和语音。大家喜欢把游戏和动漫中的角色延伸到现实世界中去,例如带着原神里的派蒙一起去旅行,这将是前所未有的体验。
虽然目前的大模型技术已经非常强大,应付日常的 chat 并不难,但做一个有多模态能力、有记忆、能解决复杂任务、会利用工具、有性格、有情感、有自主性、低成本、高可靠的 AI Agent 并不容易。如果说 Chat 是大模型的第一个应用场景,也许 Agent 才是大模型真正的 killer app。
2023-09-24
“国家领导人要来访问,咱们的婚礼场地被征用了,得临时换地方了!”
婚礼前一天早上 9:00 ,佳颖还在洗漱,我还没有起床。我听到外面的吵闹声,我爸我妈和前一天抵达的好友李朝辉,正在客厅里面焦急地讨论。平时我遇到急事容易发脾气,但这次却很平静。
我们一年前就预订的婚礼场地,翠屏山迎宾馆,是石家庄最好的花园式草坪婚礼场地。它唯一的问题就是属于政府接待场地,像钓鱼台一样,虽然平时也对外开放,但如果遇到政务活动需要无条件让出。当时我们觉得,五一放假,应该不会有什么领导来吧。翠屏山的人也说,五一这种时间几乎没有遇上跟政务活动冲突的情况。
我把这个消息告诉佳颖的时候,她也很平静。她说每次遇到大事,经常是在临门一脚的时候差了一点点没搞成。
五一这么好的日子,不要说草坪,就连酒店婚礼都要提前很久预订。虽然我们的婚礼已经推迟了两次,但这次改时间已经来不及了。已经是婚礼前一天,佳颖家的人已经纷纷从太原出发,我们也有多位好友已经不远万里出发了。
好在翠屏山迎宾馆帮我们联系了两个同处鹿泉区的草坪场地,让我们试试看。其中一个场地我们去过,已经被订出去了。另外一个场地我们没听说过,打电话一问还没被订出去,我们就赶紧驱车过去看。
这时候,佳颖的发小任晓和她老公梁精睿也不远万里开车到了我家。我爸我妈和总管一辆车,梁精睿就带着任晓、我、佳颖和李朝辉赶紧出发了。因为路上堵,梁精睿按照导航抄了小道,竟然比我爸我妈早到了 20 分钟。这个场地是个度假酒店,地处鹿泉区比较偏僻的位置,里面有一块今年新建的草坪,草还没有完全长好。还有一个吃饭的大厅。
虽然这个草坪的环境肯定跟翠屏山没法比,也不如我们之前看过的其他一些草坪场地,但终究是个能办草坪婚礼的地方,环境也不算差。这里的菜品也还可以,只是不像翠屏山那样是预制菜,突然要做这么多桌菜,还不知道能不能做得出来。我们就赶紧跟经理说,把这个地方预订下来。等到我爸我妈到达,就剩跟他们谈价格和菜品了。
后来我才知道,五一当天在翠屏山有 6 场婚礼,除了我们的,都推迟了。我们能赶紧抢到一个场地还是很不容易的。当然,其他那 5 家新郎新娘大多都是本地人,本来从外地来的宾客就少,可能也是他们选择推迟的一个原因。
2023-09-21
达坦科技 DatenLord 前沿技术分享 NO.34
时间:2023 年 9 月 17 日上午 10:30
随着数据中心网络性能的提高,把网络相关任务卸载到智能网卡和智能交换机成为趋势。与此同时,GPU、NPU、存储设备之间的高速直连网络也成为趋势,这里似乎又没有智能网卡的位置了。网络的智能到底该放在哪里呢?
- Slides PPTX (32 MB)
- Slides PDF (15 MB)
以下是演讲内容的图文实录,主要由 AI 整理,我做了一些人工修正。
2023-09-14
既然把博客内容翻译成了英文,那么自动翻译博士论文有没有可能呢?我的博士论文有 200 多页,而且里面有很多图,AI 能自动把这么多 LaTeX 代码翻译得一字不差吗?论文里面的图怎么翻译?
首先,把原来翻译 Markdown 的 prompt 改成翻译 LaTeX 的。原来翻译 Markdown 的时候,我是把内容按行分隔,连续的几行凑够 2048 个字符,就请求一次 GPT-4。在翻译 LaTeX 的时候仍然这样做。
就像 Markdown 一样,GPT-4 输出的内容经常有前缀和后缀,好在设置为 temperature = 0.1 之后前缀和后缀都比较固定,可以写个后处理脚本直接给去掉。此外,GPT-4 对 LaTeX 中的转义字符不够了解,例如典型的下划线 _、美元符号 $ 和制表符 &,经常没有转义导致语法错误。这也是可以通过后处理脚本,用一些规则识别到底需不需要转义,如果需要转义就自动加上。
总的来说,GPT-4 的 LaTeX 能力是不错的,除了把一些 reference 给搞乱了导致引用变成问号了,其他的地方都没什么问题。经过后处理脚本后直接就可以编译了。
其次,为了翻译论文里面的图,我首先尝试了一些 PDF 翻译工具,发现没有一家能用,这些工具都只能翻译 PDF 中的大块文字,对于架构图,只会把整张图都搞得乱七八糟。因此,我用了图片翻译的方法。首先把 PDF 转成图片,然后调用有道图片翻译 API,如果识别出了中文字符,就把用翻译出的图片替换原来的 PDF;如果没有识别出任何中文字符(例如一些实验结果图),就保留原样。
其实有道图片翻译的原理也是先对图片做 OCR,把识别出的每个文字块逐个翻译,再用翻译后的文字块替换掉图片原来位置上的文字。我感觉对于 PDF,这也是可以做的,而且可以保持 PDF 仍然是矢量图。希望做 PDF 翻译工具的改进一下。
整个翻译花了半天时间,一些小问题也懒得修了。虽然翻译质量肯定不如手写的,尤其是图片翻译质量一般,但是基本上能看了。除了对 ustcthesis.cls 做了一些微调(例如把英文封面放在中文封面前面)以外,没有对翻译后的内容做任何人工修改。
AI 自动翻译的版本: High Performance Data Center Systems with Programmable Network Interface Cards (PDF, 8 MB)
中文原版: 基于可编程网卡的高性能数据中心系统 (PDF, 8 MB)
现在 arxiv 上面的 paper 都是有 LaTeX 源码的,按照这个方法,都可以直接翻译成中文论文了。希望哪天多模态模型能强到只需要 PDF,不要 LaTeX 源码,就能做翻译,这就厉害了。
2023-09-12
Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang, Xuefeng Jin. AKG: Automatic Kernel Generation for Neural Processing Units using Polyhedral Transformations. 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI’21). Virtual, Canada, June 20-25, 2021. pp.1233-1248. [Paper PDF] [Slides by Jie Zhao]
2023-09-12
大模型真的很厉害,这个 SIGCOMM 2019 的演讲完全是脱稿讲的,从视频中可以看出我是站在舞台中间,没有看 speaker notes。我当时的英语也不怎样,经常打磕巴,而且音频录制还有回声,自己听着都有点费劲。没想到大模型能把这么差的语音都识别的差不多全对,太牛了。
识别的方法在这里。这个视频由于录制的屏幕不够清晰,我是用原始 PPT 导出的图片替换了视频中提取的图片。大家可以看看用这个视频中的音频,市面上的语音识别软件能达到多高的识别率。我试过的,包括 Google Speech-to-Text 和 Whisper,基本上都不能用。
SocksDirect: Datacenter Sockets can be Fast and Compatible. [PDF] [Slides] [Video]
Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, Lintao Zhang.
Proceedings of the 2019 SIGCOMM Conference (SIGCOMM’19).
2023-09-12
Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang. 1Pipe: Scalable Total Order Communication in Data Center Networks. SIGCOMM ‘21. [Paper PDF] [Slides with audio (25 min)] [Slides with audio (12 min)]
2023-09-12
2023-09-10
(长文预警:本文约 16000 字)
这是一个好问题。先说结论,大模型的训练用 4090 是不行的,但推理(inference/serving)用 4090 不仅可行,在性价比上还能比 H100 稍高。4090 如果极致优化,性价比甚至可以达到 H100 的 2 倍。
事实上,H100/A100 和 4090 最大的区别就在通信和内存上,算力差距不大。
H100 | A100 | 4090 | |
---|---|---|---|
Tensor FP16 算力 | 989 Tflops | 312 Tflops | 330 Tflops |
Tensor FP32 算力 | 495 Tflops | 156 Tflops | 83 Tflops |
内存容量 | 80 GB | 80 GB | 24 GB |
内存带宽 | 3.35 TB/s | 2 TB/s | 1 TB/s |
通信带宽 | 900 GB/s | 900 GB/s | 64 GB/s |
通信时延 | ~1 us | ~1 us | ~10 us |
售价 | $30000~$40000 | $15000 | $1600 |
NVIDIA 的算力表里面油水很多,比如 H100 TF16 算力写的是 1979 Tflops,但那是加了 sparsity(稀疏)的,稠密的算力只有一半;4090 官方宣传 Tensor Core 算力高达 1321 Tflops,但那是 int8 的,FP16 直只有 330 Tflops。这篇文章的第一版就是用了错的数据,H100 和 4090 的数据都用错了,得到的结论非常离谱。
H100 这个售价其实是有 10 倍以上油水的。2016 年我在 MSRA 的时候,见证了微软给每块服务器部署了 FPGA,把 FPGA 打到了沙子的价格,甚至成为了供应商 Altera 被 Intel 收购的重要推手。2017 年我还自己挖过矿,知道什么显卡最划算。后来在华为,我也是鲲鹏、昇腾生态软件研发的核心参与者。因此,一个芯片成本多少,我心里大概是有数的。
鲲鹏的首席架构师夏 Core 有一篇知名文章《谈一下英伟达帝国的破腚》,很好的分析了 H100 的成本:
把他的成本打开,SXM 的成本不会高于 300$,封装的 Substrate 及 CoWoS 大约也需要 $300,中间的 Logic Die 最大颗,看上去最高贵 :) 那是 4nm 的一颗 814mm2 的 Die,TSMC 一张 12 英寸 Wafer 大致上可以制造大约 60 颗这个尺寸的 Die,Nvidia 在 Partial Good 上一向做得很好(他几乎不卖 Full Good),所以这 60 颗大致能有 50 颗可用,Nvidia 是大客户,从 TSMC 手上拿到的价格大约是 $15000,所以这个高贵的 Die 大约只需要 $300。哦,只剩下 HBM 了,当前 DRAM 市场疲软得都快要死掉一家的鬼样了,即使是 HBM3 大抵都是亏本在卖,差不多只需要 $15/GB,嗯,80GB 的容量成本是 $1200。
TSMC 曾经讲过一个故事。台湾同胞辛辛苦苦攒钱建厂,一张 4nm 那么先进的工艺哦,才能卖到 $15000,但是那某个客户拿去噢,能卖出 $1500000($30000*50)的货啦,机车,那样很讨厌耶。你懂我意思吗?
就如最开始说的,在这个世界的商业规则下,$2000 成本的东西卖 $30000,只有一家,销售量还很大,这是不符合逻辑的,这种金母鸡得有航母才守得住。
据说微软和 OpenAI 包下了 H100 2024 年产能的一半,猜猜他们会不会发挥当年跟 Altera 砍价的传统艺能?会真的花 $40,000 * 500,000 = 200 亿美金去买卡?
咱们再分析下 4090 的成本,5nm 的 609mm2 Die,大约成本是 $250。GDDR6X,24 GB,按照 1 GB $10 算,$240。PCIe Gen4 这种便宜东西就算 $100 吧。封装和风扇这些东西,算它 $300。总成本最多 $900,这样的东西卖 $1600,算是良心价了,因为研发成本也是钱啊,更何况 NVIDIA 的大部分研发人员可是在世界上程序员平均薪酬最高的硅谷。
可以说,H100 就像是中国一线城市的房子,本身钢筋水泥不值多少钱,房价完全是被供求关系吹起来的。我在 LA 已经住了两周,公司租的房子使用面积是我北京房子的 4 倍,但售价只贵了 30%,还带个小院,相当于单位面积的房价是北京的 1/3。我跟本地的老外聊天,他们都很吃惊,你们的平均收入水平比 LA 低这么多,怎么买得起北京的房子的?
问题来了,如果 4090 这么香的话,为啥大家还要争着买 H100,搞得 H100 都断货了?甚至 H100 都要对华禁售,搞出个 H800 的阉割版?
2023-09-08
虽然大多数人比较喜欢看视频,但是我更喜欢看文字,因为文字便于非线性查找,可以快速跳读,也便于随时回顾前面的内容。
最近,我把我在学术会议上的一些演讲视频转成了文字,例如 ClickNP、KV-Direct 和 计算机网络的新黄金时代系列,今天发布的是 APNet 2023 上的 FastWake。在 ClickNP 和 KV-Direct 演讲前,我都是先在 PPT 的备注里写好稿子,到场上直接对着备注念。今年连 PPT 都是会议前一天才赶完的,更没有时间写备注了,甚至都没有完整的练习一遍,我就直接上台去讲了。
现在有了大模型,把演讲视频转成 PPT + 文字稿一点都不难。其实我一直想做个这样的在线会议插件。
- 把视频中的关键帧提取出来组成 PPT 图片列表。每帧和前一帧的差异如果超过一定阈值,就认为是切换了一页 PPT。有一个开源软件 video2pdf 就能做到。
- 把每张图片 OCR 成文字,都是打印字符,识别准确率很高,Tesseract 就可以。
- 把停留在每页 PPT 上的视频音轨提取出来,交给 Speech-to-Text 模型识别,例如我用的是 OpenAI 开源的 Whisper。
- (最后一步很重要)让大语言模型(例如 GPT-4)以 OCR 出来的当前页 PPT 和首页 PPT 内容为参考,修正 Speech-to-Text 模型识别出的 transcription。
Speech-to-Text 模型目前对于专有名词和人名的识别准确率并不高,但是这些专有名词很多是在这一页 PPT 中出现过的,PPT 首页也框定了演讲的标题和领域。因此以 PPT 内容为参考,大语言模型可以修正大部分的专有名词识别错误。如果没有 PPT 内容作为参考,需要 GPT-4 才能修正大部分的专有名词,但有了 PPT 内容,LLaMA-2-70b-chat 就足够了。此外,大语言模型可以修正演讲中口语化的表达,让文字稿更严谨、易读。
以下文字稿完全为自动生成,除了几个人名,一字未改。当然,一些小错误也就保留了,但是都无伤大雅。整个过程中用到的 Video2PDF、Tesseract、Whisper 和 LLaMA-2-70b-chat 模型都跑在我自己的 Mac 笔记本上,全程无需联网。