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Trend 1: Intelligent Network Devices
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Types of SmartNICs
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FPGA-based On-Path SmartNICs
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Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

A Cloud-Scale Acceleration Architecture, ISCA '16 (Microsoft)

TOR

Since 2016, every new server
in Azure has deployed an
FPGA-based SmartNIC

* Network virtualization

e Storage virtualization

* Bing ranking acceleration
* Compression acceleration
* Encryption acceleration



SmartNICs in the Public Cloud

* Network Virtualization consumes CPUs, Parentpriton s
e.g., 5 physical cores per host. N [rome]| [iromer
 Each physical core sells for $S0.1 per houir.

NIC Embedded Switch

* Max potential value $900 per year.
» S4500 over the lifetime of a server.

e How much does an FPGA-based

External Switch

Figure 1: An SR-IOV NIC with a PF and VFs.

2. Aren’t FPGAs very expensive?

S mart N |C COSt? While we cannot disclose vendor pricing publicly, the
. FPGA market is competitive (with 2 strong vendors), and

e |Less th an S]_OOO Wh en pu rchased N |a rge we’re able to purchase at significant volumes at our scale.

b u I k In our experience, our scale allows non-recoverable engi-

neering costs to be amortized, and the cost of the silicon
becomes dominated by the silicon area and yield. Total sil-
icon area in a server tends to be dominated by CPUs, flash,
and DRAM, and yields are typically good for FPGAs due

Azure Accelerated Networking: SmartNICs in the Public Cloud, NSDI 18 (Microsoft) to their regular structure.



SmartNICs in the Public Cloud
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Figure 6: Performance of AccelNet VM-VM latencies vs. Amazon AWS Enhanced Networking and Google GCP An-
dromeda on Intel Skylake generation hardware.

Azure Accelerated Networking: SmartNICs in the Public Cloud, NSDI 18 (Microsoft)



Challenges of FPGA-based SmartNICs

Compared architecture | FPGA challenges | Solutions
CPU/GPU/NP/SoC Low clock frequency Utilize the massive parallelism in-
side FPGA
CPU/GPU Low DRAM memory bandwidth Customize data path, parallel use
of on-chip BRAM memory, reduce
DRAM usage
CPU/GPU/NP/SoC Hardware description language | Programming framework friendly
programming is complex and | to software developers based on
difficult to debug high-level synthesis technology
CPU/GPU/SoC The software and hardware ecosys- | Open hardware platform, program-
tem is relatively closed ming framework and IP core
CPU/GPU/NP/SoC The chip area is limited and not | Separate control plane and data
suitable for scenarios with com- | plane; data plane based on cus-
plex logic tomized instructions
CPU High PCle latency when accessing | Design efficient data structures
main memory and use out-of-order execution to
achieve latency hiding
CPU Limited PCIe bandwidth when ac- | Design efficient data structures and
cessing main memory use on-board cache
CPU/GPU/NP/SoC Need to rewrite for upgrades, inter- | FPGA operating system that sup-
rupt service ports dynamic reconfiguration and
seamless service upgrades
CPU/NP/SoC High task switching overhead Spatial multiplexing, not time-
division multiplexing
ASIC Some compute-intensive loads are | Harden general modules into hard
inefficient cores




FPGA Programming Made Simple

.element Count <1, 1>

1
ClickNP host " 2 .state/{
ic ost process e ; along count;
[Mgr thrd ] [Workerthrd] elements 4 }
5 .init{
ClickNP lib i 6 count = 0;
¢ PCle I/(I)c::m:: HLS specific libs hc(::lsikr:gpr ClickNP 7 }
L______J script 8 .handler(
V 9 if (get_input_port() != PORT_1) {
Host Catapult PCle Driver 10 return (PORT _1);
A ClickNP compiler " } B
FPGA - & 12 flit x;
ClickNP role Commercial HLS 13 x = read_input_port (PORT_1) ;
tool-chain 14 if (x.fd.sop) count = count + 1;
HLS specific runtime — i set_output_port (PORT_1, x);
1
17 return (PORT_1);
Catapult shell 8 }
. . . .signal
Figure 2: The architecture of ClickNP. . é?s igr{l al p;
21 p.Sig.LParam[0] = count;
2 set_signal (p);
Table 3: Summary of ClickNP NFs. 23 } }
24
Network Function \ LoCt | #Elements | LE | BRAM (a)
Pkt generator 665 6 | 16% 12% 1 Count :: cnt @
Pkt capture 250 11| 8% 5% 2 I{eet:éktie .
OpenFlow firewall | 538 7132% | 54% } nost Pktlogger :: logger
IPSec gateway 695 10 | 35% 74% s from_tor -> cnt -> tee [1] -> to_tor
L4 load balancer 860 13 | 36% 38% 6 tee [2] -> logger
pFabric scheduler 584 7| 11% 15% (b)
" Total line of code of all element declarations and ClickNP: Highly Flexible and High Performance Network

configuration files. Processing with Reconfigurable Hardware, SIGCOMM ‘16



When to Use FPGA —the 10/100/1000 Rule

* 10 — 10 years of workload lifetime
* |f the workload is shifting too fast, FPGA is not as agile as CPUs

e 100 —-100 lines of C++ code

* |f the workload is too complicated, an FPGA implementation consumes too
much area

* 1000 — 1000 servers

* |f the workload is too lightweight, the FPGA development cost is hard to
amortize



ASIC-based On-Path SmartNICs: AWS Nitro

Intel mainboard * Traditional: Hypervisor (domO)
consumes several cores
KRG B, * Network virtualization (VPC)

(domo) - gomiy/syesy - * Storage virtualization

Instance storage P e Local instance storage
* Network-attached EBS volumes

* Management
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VPC networking

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Removes Hypervisor CPU Cost

Intel mainboard

Nitro architecture
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Nitro computers

Amazon EBS Insténce
volumes storage

PCle bus

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Enables Bare-Metal Instance

Intel mainboard

Nitro architecture

M5d.metal
instance type

Amazon EBS Instance
volumes storage

PCle bus

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Provides Security Benefits
Integrity: Nitro system

Nitro controller is the root of trust

Nitro controller boots from completely private SSD

Boot process formally verified by AWS Automat
https://link.springer.com/chapter/10.1007/978-

Conducts various integrity checks of  Mainboard cannot
Nitro computers update firmware

. . . But...
Continues on with mainboard boot .
Hold mainboard in reset

When necessary, secure software during power-up
updates for all componenfcs using Validatem tmware;
secure channels, signed binaries if valid, continue

Either inject known-good
hypervisor

Or boot customer
OS/hypervisor AMI from o /

pseudo-NVMe (EBS) | Nitro Computeﬁ(s"&
volume - private net\!s/,ork >

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Provides Security Benefits

Passive communications design

Hypervisor awaits commands from Nitro controller

Sent via trusted communications channel
Never initiates communications with the controller

Not connected to the network at all
Nitro controller awaits commands from the external control plane

Nitro hypervisor (KVM-based)

s
-2

Listens on network substrate awaiting encrypted, authenticated API calls

Never initiates outbound connections
Outbound communications from either layer
are a clear sign of compromise and are
treated accordingly
Nitro ¢ontroller & other
Nitro computers

i " . mb5d.4xlarge
H - . m5d.4xlarge

i [{ mso.4xarg
i .m5d4xlarge i

Amazon EBS Instance
volumes  storage
PCle bus

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



AWS Nitro Provides Security Benefits

Additional confidentiality benefits

No DomO in Nitro hypervisor—greater simplicity and safety
No SSH or other interactive modes anywhere—no direct human access

All access via 100% AuthN/AuthZ APIs with logging/auditing
—no APIs for memory access

Only the Nitro controller has access to the physical Amazon EC2 network; the
mainboard does not R e Y

End-to-end Nitro system is developed,
deployed, and managed by DevSecOps
process

Security benefits of the Nitro architecture - SEP401-R - AWS re:Inforce 2019



NP-based On-Path SmartNICs
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NP-based SmartNICs: Hard to Program

* Need to read 1000+ pages of documents
* 10+ data structure and 10+ packet processing accelerators on chip

* An NP-based RDMA implementation has 10K+ lines of C code

* Limited instruction cache: cache thrashing if not optimized
* Need to carefully arrange the hot paths to make sure it fits in the cache

* Need to pipeline accesses to DMA and data structures on chip

* A classical latency hiding problem: the trade-off between polling and context
switch

* When the flow processing cores waits for data structure access and locks, if it
switches context to other QP contexts, loading the context takes time

* Typical latencies: on-chip data structure access < context switch < DMA



SoC-based Off-Path SmartNICs (aka. DPU)

Host DRAM |e=—> Host CPU

T [

. SmartNIC

! PCle Switch
RDMA NIC NIC Multi-core General
(Connect-X) DRAM | Processors

Data Center Network

L e s

Mellanox BlueField



Off-Path vs. NP-based On-Path SmartNICs

Comparison item

Multi-core general-purpose pro-
cessor (SoC)

Network processor (NP)

Instruction type Standard ARM / MIPS instruction | Extended ARM / MIPS instruction
set set
Operating system General-purpose operating system | No operating system or customized

(such as Linux)

operating system

Operating system, paging, etc. Supported Generally not supported
Context switch and scheduling Software operating system Hardware

Locks, timers, etc. Software Hardware
On-board/core communication Shared memory Custom data path

Packet buffer

Off-chip DRAM

On-chip high-speed cache

Packet processing framework

General (such as DPDK)

Dedicated

Multi-core queuing model

d-FCFS (hardware dispatch)

c-FCFS (hardware scheduling)

Average processing latency

About 5 us

Less than 2 us

Single-core processing capacity | About 3 M pps About 1 M pps
Number of processor cores About 8 About 64

Total packet processing capacity | About 24 M pps About 64 M pps
Power consumption 10 Wto20 W




DPU is Not Yet Another CPU

NAIVELY MOVING WORKLOADS TO NIC CPUS DOESN’T WORK

Traditional Server - 30 Total Cores Server with Non-Accelerated DPU Offload - 36 Total Cores
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DPU Cores for Infrastructure

Regular NIC

18 DPU Cores Replace 12 Server CPU Cores —
No Gain in Performance or Efficiency
Not compatible for higher bandwidth without requiring
significant system modification

NVIDIA DATA CENTER PROCESSING UNIT (DPU) ARCHITECTURE, HotChips 2021



DPU Must Include Hardware Acceleration

NVIDIA DPU SYSTEM ARCHITECTURE Programmable Data Path

Bare Metal Host

Server Class CPU subsystem

Data center operating system control plane

Isolated memory subsystem optimized for networking Control Path

NIC subsystem

GO (EHENEIT S NIC Subsystem Virtual PCle Switch ARM
Isolated boot domain, real time OS Hypervisor
Accelerating data path at line rate bl ) SDS
PCle subsystem o MER 5 10 Processors SDN
. . . . ASAP2 /
E(l)er:l(mbifcgltliiopn?Sesr]ngLTlr:teer:it’dg(\iilsessv,vg;?i]rrrlﬁz, e'\:iTr%rFiép Data Acceleration PCle Switch Ethernet | InfiniBand RDMA / TCP Pipeline
Data acceleration ASAP2 Pipeline

Accelerating ARM workload InfiniBand/Ethernet

SSDs / GPU BlueField DPU

Network

DPU: A convergence of Off-Path and NP-based On-Path SmartNICs

NVIDIA DATA CENTER PROCESSING UNIT (DPU) ARCHITECTURE, HotChips 2021



How to Choose SmartNICs?

e ASIC and FPGA are similar.

* FPGA is more programmable.
e ASIC is cheaper in extremely large scale (1M+ hosts).
 Suitable for large cloud providers.

* NP-based SmartNICs and DPUs are similar.

* Only offloading tasks to generic processors does not work.

* Hardware acceleration adds complexity to programming, but essential for
performance.

 Suitable for small-to-medium scale deployments.
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Programmable Switch: P4

Match + Action
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Programmable Parser

Programmable Match-Action Pipeline

Example [NetBricks, OSDI ’16] Barefoot Tofino
Packets per second ~30 million > 1 billion
Bandwidth 10-100 Gbps 6.5 Tbps
Processing delay 10-100 us <1lus

Visibility Narrow Wide

Memory capacity Large Small
Programmability High Low




Use Case 1: NIC + Switch Congestion Control
okt o’EI&’E.

adjusting flow

rates per ACK - ——— o ————— _| .
Sender 6 Receiver

HPCC: High Precision Congestion Control, SIGCOMM ‘19

Confined AQM: end-to-end active credit-based congestion control

« Separated efficiency and fairness controller at switches

- Efficiency controller: ensure high utilization of bandwidth, but no over-utilization -> zero-queue
and zero-drop

« Fairness controller: ensure QoS and fair bandwidth distribution

1. Request rate increase 3. Info attached in packet header

Efficiency Fairness
— controller controller
4. Echo back info to source

2. Admit or deny requests based
on available resource

A

5. Adjust rates based on
feedbacks

Towards Compute-Native Networking, APNet 21



Use Case 2: Sub-RTT Coordination on Switches

* ngh throughpUt —_ Directly from high-

e Low |atency performance switches
. .
Strong consistency | Chain replication in :
the network NetChain
° Fa u lt to l €rance - Handle read & write requests Handle reconfigurations
at line rate (e.g., switch failures)

Write Read Read/Write Network

Request Request Reply Controller
> >
Head Replica Talil

NetChain: Scale-Free Sub-RTT Coordination, NSDI ‘18



Use Case 3: SHARP for Al Param Aggregation

Step 1: Read and reduce
Send Partials

Send Partials 2 s
N reads In-Switch Sum
Receive Partials -
N reads Receive Partials

1 reduced read

Step 2: Broadcast result
Send New Partial

Send New Partial 1 write
AT In-Switch MultiCast
Receive New Partials N duplications
N writes - Receive New Partials
N writes

Traffic summary (at each GPU interface)
\

2N send, 2N receive N+1 send, N+1 receive

~2x effective NVLink bandwidth

THE NVLINK-NETWORK SWITCH: NVIDIA’S SWITCH CHIP FOR HIGH COMMUNICATION-BANDWIDTH SUPERPODS, HotChips ‘22



Why Intel Stopped Tofino

Po

McKeown, Nick Jan 29,2023, 7:02:49PM Yy 2N
to P4-an...@lists.p4.org, P4-di...@lists.p4.org, p4-d...@lists.p4.org, p4-...@lists.p4.org, p4-...@lists.p4.org

Dear P4 Community:

Since its introduction a decade ago, P4 has led to a Cambrian explosion of ideas including new protocols, new
applications like in-band telemetry, and new testing, validation, and formal verification techniques. P4 has

become the industry standard for programming and specifying forwarding behavior. As a measure of success, one in
four papers published at ACM SIGCOMM 22 — the top conference for networking research — are built on P4 in some
way.

As you may know, Intel recently announced that it will stop development of the next-generation Intel® Tofino®
Intelligent Fabric Processor (IFP) products currently on its roadmap. However, we will continue to sell and support our
existing Tofino® products. Intel Tofino® IFPs proved to the world that you can build fully programmable switches
without compromising on performance. Tofino's program independent switch architecture (PISA) will have a lasting
effect on how packet-processing pipelines are built; it has already influenced programmable products at the edge such
as SmartNICs and IPUs.



SmartNIC or Programmable Switch?

Host Host

CPU Mem CPU Mem

Programmable
Switch

SmartNIC Programmable Switch

Congestion DCQCN, TIMELY, MP- HPCC, pFabric, DeTail, CP,
control RDMA, IRN NDP
Load balancer VFP SilkRoad

Pilaf, FaRM, DrTM,
FaSST, KV-Direct

Key-value store

SwitchKV, NetCache,
IncBricks

Aggregation NetAgg, CamCube SHARP, DAIET, SwitchML,
ATP
Lock DSLR NetLock

Coordination /
Replication

Consensus in a Box,
DARE, APUS, Derecho,
Mu

NetChain, NetPaxos,
SpecPaxos, NOPaxos,
Eris

Programming
system

Floem, iPipe, StRoM,
ClickNP, FairNIC, A-NIC

SNAP, Frenetic, P4,
P4visor, uP4, Domino,
Lyra, Gallium
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Trend 2: Fast Interconnect

NVLINK-ENABLED SERVER GENERATIONS

Any-to-Any Connectivity with NVSwitch
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THE NVLINK-NETWORK SWITCH: NVIDIA’S SWITCH CHIP FOR HIGH COMMUNICATION-BANDWIDTH SUPERPODS, HotChips ‘22



Why LLM Training Needs High Bandwidth
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Tensor Parallelism Needs High Bandwidth

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices, BaCk'Of'e nve|0pe eStImatlon fOI’ tenSOr pa I’a||E|I5m |n

input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to

with weight matrices Q/K/V matrices produce the output of the layer atte ntio n Com p utatio n .

* |n all encoders other than #0,

we don’'t need embedding. [

We start directly with the output [ ’ ‘
of the encoder right below this one

* Computation FLOPS of H100: 989T Tensor flops for 16 bit

Computation cost is roughly:
3 * batch size * token length * (embedding size *
embedding size / num GPUs) * 2 flops

Communication cost is roughly:
Batch size * token length * embedding size * 2 bytes

Computation / Communication = 3 * embedding
size / num GPUs
Example: LLaMA-2 70B, embedding size = 8192

* |f we use 8 GPUs for tensor parallelism and assume 100% FLOPS utilization:
* Bandwidth >= Computation / (3 * embedding size / num GPUs) =989T / (3 * 8192 / 8) = 321 GB/s

e Bi-direction bandwidth >= 642 GB/s
* That’s why we need 900 GB/s bandwidth for NVLink



Tensor Parallelism Also Needs Low Latency

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices, Ta klng Iatency IntO account:

input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to

with weight matrices Q/K/V matrices produce the output of the layer b Communication time iS roughly:
: (Batch size * token length * embedding size * 2 bytes
o / bandwidth) + latency

 Computation time is roughly:

e dortt nead mbedding, " 3 * batch size * token length * (embedding size *
of the encoder 1ght helon hie one mEE BN embedding size / num GPUs) * 2 flops / computation
flops

= « Example: LLaMA-2 70B, embedding size = 8192,
SRS SRS token length = 4096, batch size = 1

 Communication time = (1 * 4096 * 8192 * 2 / 450G) + latency = 14 us + latency

 Computation time =3 * 1 * 4096 * (8192 * 8192 /8) * 2 /989T =19 us

* To achieve 100% FLOPS utilization: Latency <=19 us — 14 us =5 us

* NVLink latency is <1 us when GPU P2P is enabled.

 However, if we use CPU as a proxy among GPUs, the latency would be >10 us, and the throughput also suffers.



Direct Peer-to-Peer Interconnect

NVIDIA Quantum-2 InfiniBand NDR400
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Convergence of Intra- and Inter-host Network

/ Dual Root System \
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Memory Semantics

Program
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Socket send/recv

ZeroMQ / Kafka
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Exploiting Parallelism with Memory Semantics

* RDMA is strictly in-order communication -~
. . ST AL SR S ALY (e
* Hard to utilize multiple network pathsdueto & & & & & & & &
reordering cost at receiver QQQQQQQQQQQQQQQQ

* One lost packet blocks subsequent transactions from delivery

* Hard to support page faults because a slow page-fault memory access would
block all subsequent accesses

* Many memory accesses can be executed out-of-order
* Example: transferring multiple large tensors
 Parallelize transfer over multiple network paths to improve bandwidth
* A lost packet only blocks one transaction
* Page-fault and other slow memory accesses can be processed out-of-order



Load/Store vs. Read/Write

» Read/Write is asynchronous remote memory access

e Requires multiple PCle RTTs, min latency 1.6 us

* Load/Store is synchronous remote memory access. CPU accesses network directly.
* No PCle, No WQE, CQE or doorbell, latency < 0.5 us
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Load/Store is Not a Panacea

Load/Store Read/Write
Programming Sync Async
Granularity Cache line User-specified message size
Latency Low High
Access efficiency of Low High

large data blocks

Application
transparency

Hardware

requirements

Reliability

Cache coherence

Application imperceptible, can be used to
extend local memory, achieving memory
pooling

High, requires the NIC to work closely with the
CPU

Large blast radius, a node failure will affect all
nodes using the remote memory of that node;
store instruction fault is difficult to capture

Depends on whether the hardware supports it,
but the overhead of hardware supporting
cache coherence is high at a large scale

The application needs explicit access to remote
memory; if used for memory expansion, the
application needs to be modified

Low, the NIC can be in a detached form

Easy to capture asynchronous remote access
exceptions through the application, reducing the blast
radius to the affected application

Not supported, the software explicitly copies
between remote and local memory. In the case of
sharing, it needs to coordinate with distributed locks
to ensure consistency




GPU Comm.: From Load/Store to Read/Write

GPU (send) GPU (recv) GPU (send) GPU (recv) GPU (send) GPU (recv)
mem mem mem lI_l_I_I!?_P mem mem mem
1 -2[pMA] pMA]l )| 22E5@ HPMA DMA 1l [pMA DMA
JAO)
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.............. ) CPU CPU Saans .)
(a) CPU-controlled. (b) GPU-controlled MMIO. (c) GPU-controlled DMA (this work).

Figure 3: Comparison between CPU-controlled and GPU-controlled communication — the latter has two different approaches,
which leverage (b) MMIO (like NCCL) or (c) directly initiated DMA (this work). DEV refers to any kinds of devices that can

implement our DMA engine.

" - Throughput (GBps) %0 - Latency (us) ARK: GPU-driven Code Execution for Distributed Deep Learning, NSDI ‘23
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Which Semantics to Pick?

Compute at Client

Memory-mapped Load/Store
(CXL, Gen-Z, etc.)
In-Network
Computation

Asynchronous Read/Write
(one-sided RDMA)

Load/Store: low overhead per operation, but
synchronous; may have cache and buffer
Read/Write: high overhead per operation, but
each op can transfer a large block, and many
ops can work in parallel

Compute at Server
(Home Node of Data)

RPC on CPU

Switch (in-network): high throughput but low
programmability and buffer size

SmartNIC: high parallelism but high PCle
latency and low buffer size

RPC on CPU: close to memory, easy to
program but high cost
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e Convergence of Al and Cloud Networking



Convergence of Al and Cloud Networking
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Convergence of Al and Cloud Networking

DPU ENABLES

CLOUD-NATIVE
SUPERCOMPUTING

Multi-Tenancy with Zero-Trust Security

Collective offload with UCC accelerator

Smart MPI progression

User-defined algorithms

1.4X higher application performance

Traditional Supercomputing

Host

Applications
Management

Isolation
HPC / Al HPC / Al Monitoring
Communication || Storage: File

Frameworks System Client

InfiniBand Adapter

Acceleration Engines

InfiniBand Switch

Acceleration Engines

NVIDIA DATA CENTER PROCESSING UNIT (DPU) ARCHITECTURE, HotChips 2021

Cloud-Native Supercomputing

Applications

InfiniBand BlueField DPU

HPC / Al HPC / Al Management
Communication Storage: File Isolation
Frameworks System Client Monitoring

Magnum IO DOCA

Acceleration Engines

InfiniBand Switch

Acceleration Engines




Region-scale RDMA for Disaggregated Storage

Application: “Write the block of data at local disk w, address x to remote disk y, address z”
CPU cPU

/Pack'etik """ v &

~70% of total network traffic Post Indicate _—— Interrup Copy =
j Backend

TCP: Waste of CPU, high latency due to CPU processing

Frontend
_ Write local buffer at
_ Address A to remote / ..... X

buffer at Address B
Application
DMA

Memory

VM

Azure Compute Azure Storage

70% of Azure traffic is RDMA for
disaggregated storage

\ Buffer B is filled
Application
DMA

Memory

Buffer A Buffer B

RDMA: NIC handles all transfers via DMA 7

Empowering Azure Storage with RDMA, NSDI 23



Region-scale RDMA for Disaggregated Storage

RDMA Benefits Regional Hub || Long-haul Links

Data Center

For Azure

Core savings
Sell freed-up CPU cores in compute
Buy cheaper servers in storage

100

_________
-
’f
-

For Customers

80 |

60 1 -= TCP

Lower IO latency and jitter —— RDMA

40 -

20

0.2

Normalized CPU Utilization (%)

] 1 T T T
i i 1072 107! 10°
: i Normalized Message Completion Time

1 1
0 100 200 300 400
Time (Minutes)

Empowering Azure Storage with RDMA, NSDI 23 o
RDMA reduces CPU utilization RDMA reduces storage latency



Region-scale RDMA for Disaggregated Storage

* Challenges: * Solutions:

* PFC Storm caused by * PFC Watchdog on switches and

malfunctioning NICs and switches SmartNICs to.distinguish PFC Storm
from congestion PFCs

* Interoperablllty of heterogenous * Minimize PFC generation using per-flow E2E

NICs and switches congestion control, BUT keep PFC to allow fast
start and lower tail latency

) Scalingl PFC alnd cohngelsticigo ‘ * Fine-tune DCQCN for NIC inter-op;
control over long-haul m) Switch — SONIC: unified software stack

links between AZs * Jointly tune DCQCN params with
switch buffers; sparse ECN marking;
DCQCN does not suffer from RTT
unfairness

Empowering Azure Storage with RDMA, NSDI ‘23



RDMA: The Devil is in the Details

Retransmission latency

JRP- ~ 200
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Seqgnum. of the dropped packet Segnum. of the dropped packet
READ WRITE

Significant improvement from NVIDIA CX4 Lx to CX5 and CX6 Dx
Intel E810 cannot efficiently recover lost READ packets

Lumina: Understanding the Micro-Behaviors of Hardware Offloaded Network Stacks, SIGCOMM 23



Performance Isolation Problem of RDMA NICs

RNR causes severe RX pipelines contention

RX pipelines handle such

_ SEND request
errors and discard requests v
s ATTETEEEEEEEEEEEEEES ~ ./
o N\ A
RX Pipelines
(processing unit)
X,
1 O
9% NIC Cacfhe NIC Ca(?he 1 ANY
(Translation) (Connection) : workload
1
TX Pipelines 1
(processing unit) I
Victim Bandwidth Attacker Bandwidth
w/o RNR error 97.07 Gbps \
w/ RNR error 0.018 Gbps @ Gbps 0

Husky: Understanding RDMA Microarchitecture Resources for Performance Isolation, NSDI ‘23



Lessons from Azure RDMA Deployment

:'q Failovers are very expensive for RDMA
g%%j Host network and physical network should be converged
’QQ Switch buffer is increasingly important and needs more innovations

Cloud needs unified behavior models and interfaces for network devices

nnnnn

Testing new network devices is critical and challenging

Empowering Azure Storage with RDMA, NSDI ‘23



The Congestion Challenge

Network congestion

« Congestion within network
« Adaptive routing can help

Endpoint congestion

« Caused by the endpoints

» Network routing cannot help (can make it
worse)
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Domain-Specific Interconnection Networks in the Era of Domain-Specific Al Supercomputer, APNet ‘23 Keynote



Predictable RDMA Network for Al/HPC

L Client Server
. ____Notification
- ‘ —
Sender NIC Switch Receiver NIC . Server
N . : ; SIS . Client L Timeout
Reaction Point  Congestion Point  Notification Point Timeout P Winidow
(RP) (cP) (NP) Window |pcle] - PCle " Fabric __ PCle : IPCle
- > wite” P Traffic SRead : -
1. Congestion Control 2. End-to-end Flow Control
(DCQCN) (1RMA)
FG1(A—B) FG2(A—C) FG1(A—B) FG2(A—C)
20G Demand 10G Demand 10G Demand 10G Demand

-
-

3. Flow Scheduling
(PIAS)

Priority 1

Priority 2

Priority 3

_EII_L
Tor oy

Priority 4

5G Allocated 10G Allocated 10G Allocated

20G Allocated
—_—\ - B> —_—\ === >

4. Traffic Engineering
(B4 in WAN, ? in datacenters)



Predictable RDMA Network for Al/HPC

Conventional Network

« Commonly done based on
network backpressure “ H “ B
« Reactive approach makes the _ : _ :
routing decision difficult, increases . Re-oute : §
latency, and :
increases hardware complexity

* Network latency is unpredictable n n

Software-scheduled Network

. . . Traditional Software-scheduled
Avoids congestlor.1 o Non-deterministic Network
« Enables maintaining a deterministic TSP Network

architecture to scale to a multi-node
deterministic network execution

Domain-Specific Interconnection Networks in the Era of Domain-Specific Al Supercomputer, APNet ‘23 Keynote



General-Purpose vs. Domain-Specific

General-Purpose Cray/HPE IBM Domain-Specific
Networks Ethernet Slingshot BlueGene/Q Networks
Flexibility Efficiency (perf/$)

Infiniband (IB) NVIDIA Groq Scale-out TSP
NVLink/NVSwitch Google TPU
:”'””: DE Shaw Anton
1 [oruE [ Tesla Dojo 1,
nund E‘)L" —
T O - ASIC|
3% OF

Domain-Specific Interconnection Networks in the Era of Domain-Specific Al Supercomputer, APNet ‘23 Keynote



My View on the Debate

* Programmability and scalability first
* Programmability promotes ecosystem
 Scalability enables a unified architecture for many scenarios
* |dentify bottlenecks in real systems before optimizing performance

 Consider GPUs vs. DSAs

* DSAs have higher performance but CUDA has the best ecosystem
* The price of H100 (S30K~S40K) is 15~20x of its manufacturing cost (S2K)



Summary

* Trend 1: Intelligent Network Devices
 SmartNIC: FPGA, ASIC, NP and DPU
* Programmable Switch

* Trend 2: Fast Interconnect
* NVLink and CXL: Direct P2P with Memory Semantics
e Convergence of Al and Cloud Networking

* Where should we put network intelligence?
* The Al era is coming, so everything is going to be smart

* SmartNICs for virtualization, switches for In-Network Telemetry, direct P2P
among xPUs with memory semantics

* Programmability and scalability first



Thanks!



