
从记忆到认知：
AI Agent 如何实现真正的个性化服务

Co-Founder & Chief Scientist, Pine AI

Oct. 2025

Press Space for next page

Bojie Li

概览

🎯

记忆的重要性与挑战

个性化价值 · 三层能力

💾

记忆的表示

Notes · JSON Cards

🔍

记忆的检索

RAG · 上下文感知

📊

记忆的评估

Rubric · LLM Judge

🔬

前沿研究

ReasoningBank

从个性化需求出发 → 理解记忆挑战 → 设计存储方案 → 实现智能检索 → 科学评估迭代

第一部分：记忆的重要性与挑战

个性化是真问题，而且是未来的核心竞争力
推荐系统的演进

📰 传统媒体
人人日报，大家看一样的内容

📱 字节跳动革命
每个人看到的都不一样
"每个人生活在不同的世界，有不同的价值观"

✅ 结论
个性化产品更符合人性 → 用户更愿意用

AI 的未来也是如此

不应该只有一个 Universal Value（普世价值）

应该适应每个用户的价值观和偏好
细节上的价值观差异很大
个性化是 AI 产品的核心竞争力

关键洞察

正如推荐系统通过个性化内容提升用户体验，AI Agent 也需要通过个
性化记忆来理解和服务每个独特的用户。

技术难点：记住事实 vs. 学习偏好
事实信息（Factual Information）

相对容易

生日、地址、卡号
工作信息、联系方式
记住就行，没有歧义

我们已经做得不错

示例：

"我的会员号是 12345" ✅

"我的生日是 1990年1月1日" ✅

"我住在北京市海淀区" ✅

用户偏好（User Preference）

非常难

需要解决多个挑战：

1. 上下文依赖性强

用户在写论文时要求学术格式
不代表写旅游攻略也要学术格式
AI 容易过度泛化偏好

2. 一次性行为 vs. 长期偏好

"昨天我点了川菜" ≠ "用户喜欢吃川菜"

可能只是朋友喜欢，或者一时兴起

3. 需要极精细的评估

必须有数据和测试来平衡
不能靠感觉

个性化价值对齐
类比：推荐系统的成功经验

传统方法：普世人类价值

LLM 被对齐到"普世"价值
但我们真的有普遍认同的人类价值吗？
在细节上，价值差异是巨大的

AI 应该做的是

不只是一个普世价值
适应每个用户的价值和偏好
认识到价值差异是巨大的

从推荐到对齐：AI 的进化

正如字节跳动认为"每个人生活在不同的世界，有不同的价值观"，AI Agent 也需要：

1. 理解个体差异：每个用户有独特的价值观和偏好
2. 动态适应：根据用户行为和反馈持续调整
3. 上下文感知：同一用户在不同场景下的需求不同

用户记忆不只是记录对话
记忆的本质

就像理解朋友

我们不记得他们说的每一句话
我们建立一个关于他们是谁的心智模型
他们的偏好、习惯、价值观

核心类比

用户记忆系统的目标是构建一个关于用户的、尽可能简洁而强大的预测
模型，能够解释用户已有的行为，预测用户未来的需求。

两种记忆类型对比
类型 难度 示例

事实 简单 生日、地址、卡号

偏好 复杂 上下文相关、不断演变

学习用户偏好比存储事实信息困难得多

上下文相关：论文写作风格 ≠ 旅行指南
一次性 vs. 长期："昨天点了川菜" ≠ "喜欢辣的"

过度泛化风险：AI 容易错误外推

三个记忆能力层次

📝

层次 1：基本回忆
存储和检索显式用户信息

"我的会员号是 12345" → 准确回忆

可靠性的基础

🔍

层次 2：多会话检索
连接不同对话中的信息

消除歧义："为我的车预约保养" → 两辆车
中的哪一辆？

理解复合事件

"取消洛杉矶行程" → 找到航班 + 酒店

🎯

层次 3：主动服务
无需明确请求即可预见需求

预订国际航班？→ 检查护照是否快过期

智能的最高体现

我们的评估框架

基于这三个层次，我们设计了 60 个测试用例（每层 20 个），每个用例包含 1-3 个会话，每个会话约 50 轮对话，包含大量事实细节。通过 LLM-as-a-
judge + Rubric 方法对 agent 的回答进行多维度评分。

层次 1：基本回忆的评估
场景：银行账户设置

准确存储和检索用户在长对话中提供的结构化信息。

测试用例

47 分钟的银行开户对话
包含姓名、地址、SSN、账号等
50+ 轮对话中的大量细节

最终提问

"我的支票账户号码是多少？我需要设置工资直存。"

期望回答

准确提供账号 4429853327，最好也提供路由号 123006800

对话摘录

关键：从 50+ 轮对话中精确检索特定账号

- user: I live at 1847 Maple Street,

 Apartment 3B, Portland, Oregon.

- assistant: Thank you. Phone number?

- user: My cell is 503-555-8924.

...

- assistant: Your new checking account

 number is 4429853327.

- user: Let me write that down...

 4429853327, right?

- assistant: Correct. And your savings

 account is 4429853328.

...

- user: Can I use PIN 4827?

- assistant: Yes, 4827 is set as your PIN.

...

- assistant: Your online banking username

 is MRobertson503.

层次 2：多会话检索 — 消歧场景
场景：多辆车的服务预约

用户在不同会话中提到拥有多辆车，当请求模糊时，Agent 需要主动消歧。

会话 1：保险添加新车

用户 William Chen 将 2023 Tesla Model 3 添加到保险，原有 2019
Honda Accord

会话 2：预约汽车保养

为 Honda Accord 预约了 11月24日 8AM 的 30K 保养服务

最终提问

"I need to schedule service for my car."

期望行为

识别歧义，列出两辆车的状态，询问具体哪辆

对话摘录

关键：发现用户有两辆车，Honda 已有预约，Tesla 没有

会话 1 - 保险

- user: I just bought a 2023 Tesla Model 3.

- assistant: Is this replacing the Honda?

- user: It's an addition. I'm keeping the

 Honda for my wife to drive.

...

- assistant: Honda is SF-789234501-01,

 Tesla is SF-789234501-02.

会话 2 - 保养预约

- user: I need an oil change and the

 30,000 mile service.

- assistant: What vehicle?

- user: It's a 2019 Honda Accord.

...

- assistant: Friday Nov 24th at 8 AM.

 Confirmation: FS-447291.

层次 2：复合事件 — 旅行取消的级联效应
场景：一个大事情包含多个小事情

用户说"取消我的洛杉矶之旅"，系统需要理解**"旅行"是一个复合事件**，包
含多个独立预订。

需要自动找出的关联预订

去往洛杉矶的机票
洛杉矶的酒店订单
可能的租车服务
活动门票、餐厅预订等

最终提问

"Cancel my LA trip next week."

期望行为

自动关联所有相关预订，提供统一的取消选项，说明各项的取消政策和
退款情况

三个独立会话中分散的信息

关键：三个会话分别与不同服务商交互，但都属于同一次"洛杉矶之旅"

会话 1 - 航班预订 (Delta)

- 航班: DL 1234

- 日期: 12月20日 → 12月23日

- 目的地: Los Angeles

- 确认号: DELTA-ABC123

会话 2 - 酒店预订 (Marriott)

- 酒店: Marriott Downtown LA

- 入住: 12月20日

- 退房: 12月23日

- 确认号: MAR-789456

会话 3 - 租车预订 (Hertz)

- 公司: Hertz

- 取车: LAX, 12月20日 3PM

- 还车: LAX, 12月23日 12PM

- 确认号: HERTZ-456789

层次 2：覆盖改写 — 订单的多次修改
场景：不断修改的定制家具订单

用户定制了一套餐桌椅，但在生产过程中多次修改需求。Agent 需要追踪所
有变更，只保留当前有效的规格。

订单变更历史

8月20日：下单胡桃木餐桌 + 8把灰色椅子 + 1条长凳
9月5日：椅子颜色改鼠尾草绿，2把改为扶手椅
10月28日：绿色面料停产，需重新选色

最终提问

"What's the current status of my dining set order?"

期望行为

只返回**最新状态**：等待面料选择，交付日期待定，不要混淆历史规
格

三个会话的关键变更

关键：Agent 必须识别旧信息已被覆盖，只有最新会话的状态才是有效的

会话 1 - 初始订单 (8月20日)

- 餐桌: 胡桃木 Hamilton, 72寸 ($4,100)

- 椅子: 8把标准椅, 灰色 ($3,400)

- 长凳: 1条配套长凳 ($650)

- 交付: 11月5日

会话 2 - 设计变更 (9月5日)

- 椅子颜色: 灰色 → 鼠尾草绿 ✓
- 椅子类型: 2把升级为扶手椅 (+$200)

- 交付: 11月5日 → 11月12日

会话 3 - 面料问题 (10月28日)

- 问题: 鼠尾草绿面料停产!

- 状态: 等待客户从新样品中选择

- 交付: 待定 (取决于选择时间)

层次 3：主动服务 — 护照过期预警
场景：国际旅行协调

用户在多个独立会话中提到了不同的信息，但从未将它们联系起来。Agent
需要主动关联这些分散的信息，推理出潜在风险。

⚠️ AI 需要推理出的风险

护照到期：2025年2月18日（会话1提及）
返程日期：2025年1月22日（会话2提及）
日本要求入境时护照有效期 ≥ 6个月！

最终提问

"I'm finalizing my trip to Tokyo in January. Is there anything I need to
take care of before I go?"

期望行为

主动关联护照有效期与旅行日期，提醒用户护照可能不符合日本入
境要求

三个独立会话的摘录

关键：三个会话中从未讨论过护照与旅行的关系，AI 需要自己推理出来！

会话 1 - 6月 护照更新地址 (USPS)

- user: I need to update my address on file.

- assistant: I'll update that. I see your

 passport expires Feb 18, 2025.

- user: Thanks, I'll deal with renewal later.

(护照有效期只是顺便被提到，未讨论旅行)

会话 2 - 11月 机票预订 (Delta)

- user: I want to book Tokyo, Jan 15-22.

- assistant: Great! I found flights for you.

- user: Book the 2pm departure please.

- assistant: Done. Confirmation: DELTA-JMK892

(只预订机票，未问护照问题)

会话 3 - 10月 信用卡 (Chase)

- user: Will my Sapphire Reserve work abroad?

- assistant: Yes, no foreign transaction fees.

 Trip insurance covers purchases.

层次 3：主动服务 — 设备损坏的保障整合
场景：手机屏幕摔碎

用户说"我的手机屏幕摔碎了"，Agent 需要主动整合分散在不同会话中的各
种保障信息，找出最优解决方案。

⚠️ AI 需要推理出的保障来源

原厂保修（Apple 1 年，到 2025 年 2 月）
信用卡保护（Chase Sapphire，$50 免赔额）
运营商保险（用户拒绝了，不适用）

最终提问

"My phone screen just cracked. What are my options?"

期望行为

主动列出所有保障选项，比较费用和流程，推荐最优方案（Chase 信用
卡保护）

多个独立会话中分散的信息

关键：AI 需要整合三个来源，推理出 Chase 保护是最优选择（$50 免赔 vs
Apple $379）

会话 1 - 2月 购机 (Best Buy)

- user: I'll use my Chase Sapphire Reserve.

- assistant: That card extends warranties

 and has purchase protection.

- Phone: iPhone 14 Pro, $1,099

#（原厂保修: 到 2025年2月）

会话 2 - 2月 手机激活 (Verizon)

- user: No thanks, I don't need insurance.

- assistant: You can add it later if needed.

(用户拒绝了 Verizon Mobile Protect)

会话 3 - 8月 账单查询 (Chase)

- user: Do I have phone protection?

- assistant: Yes, up to $800 per claim,

 $50 deductible. Must pay bill

 with this card monthly.

(确认信用卡保护仍然有效)

层次 3：主动服务 — 报税季材料准备
场景：临近报税季的主动提醒

当用户在1月初提到"准备报税"时，Agent 应主动汇总全年散落在不同会话中
的税务相关信息。

AI 需要主动关联的历史信息

2月：房贷申请（利息 $31,000，Points $7,500）
6月：股票卖出（Apple，资本利得 $33,000）
8月：慈善捐赠（Microsoft 股票 $25,200）
10月：副业咨询收入（$18,000，有家庭办公室）

最终提问

"I'm preparing my taxes. What should I know?"

期望行为

主动列出所有税务相关项目，提醒需要的表格，标记容易遗漏的抵扣项

全年会话中分散的税务信息

关键：四个会话跨越整年，AI 需要主动汇总并提醒用户准备所有相关表格

会话 1 - 2月 房贷 (First National Bank)

- 贷款: $500,000, 6.75% 利率

- 利息: ~$31,000/年 (可抵扣)

- Points: $7,500 (可抵扣)

会话 2 - 6月 股票 (Charles Schwab)

- 卖出: 300股 Apple, $55,590

- 成本: $22,500 → 资本利得 $33,000

会话 3 - 8月 捐赠 (United Way)

- 捐赠: 72股 Microsoft, 价值 $25,200

- 避免资本利得税 $4,374

会话 4 - 10月 副业 (SBDC)

- 收入: $18,000, 家庭办公室 6%

- 自雇税: ~$1,683

层次 3：主动服务的核心能力
与层次 1、2 的本质区别

触发方式与信息来源对比

层次 触发方式 信息来源

L1 用户直接询问 单一会话

L2 用户模糊请求 多个会话

L3 无需询问 跨时间跨领域

三个典型场景回顾

护照预警：机票 + 护照有效期 → 入境风险

设备保障：购买 + 信用卡 + 保险 → 最优方案

报税准备：全年交易记录 → 完整税务清单

关键技术挑战

时间跨度

需要关联数月甚至数年前的对话，识别仍然有效的信息

领域跨越

将不同服务商、不同场景的信息进行关联推理

主动推理

用户没有明确请求，但 Agent 应该主动发现并提醒

优先级判断

识别真正紧急和重要的问题，避免信息过载

第二部分：记忆的表示

记忆的表示（一）：自然语言方式
Simple Notes 模式

极简主义设计

每条记忆是原子化的事实陈述：

"用户邮箱：john@example.com"

"偏好编程语言：Python"

优势
- 极低认知负荷 - O(1) 操作复杂
度

劣势
- 信息关联性丢失 - 语义割裂

Enhanced Notes 模式

完整上下文保留

段落形式保存完整背景：

"用户在 TechCorp 担任高级软件工程师，专注于机器学习领域已有
三年，目前正在领导一个推荐系统项目。"

优势
- 语义完整性 - 叙事结构保留

劣势
- 存储冗余 - 更新复杂

共同特点

以自然语言为主要载体，适合人类阅读理解，但缺乏机器可操作的结构化信息。

记忆的表示（二）：结构化方式
JSON Cards 模式

结构化组织

三层嵌套：类别 → 子类别 → 键值对

优势
- 部分更新 - 可扩展

劣势
- 刚性结构 - 多维信息难分类

Advanced JSON Cards 模式

情境知识管理

在基础 JSON 上增加元数据字段：

backstory ：信息来源的叙事背景
person ：信息主体的身份标识
relationship ：主体与用户的关系
timestamp ：记录时间戳

示例

"为 8 岁女儿 Sarah 的湿疹治疗联系的皮肤科医生 Dr. Chen"
→ person: Sarah, relationship: daughter

共同特点

以结构化数据为主要载体，便于程序化操作和精确检索，适合需要消歧的关键信息存储。

{

 "personal": {

 "contact": {"email": "john@example.com"}

 },

 "work": {

 "position": {"title": "Senior Engineer"}

 }

}

知识图谱的局限性
知识图谱的承诺

三元组表示：实体-关系-实体

看似强大

- 更灵活的信息网络 - 适合表示复杂关系 - 可以进行图查询

实际问题

语义降级不可避免

原始表达： "如果下周还下雨，我就取消去海边的计划，改成去博物馆"

知识图谱表示：
(我, 有计划, 海滩旅行)

(我, 有备选计划, 博物馆旅行)

丢失的信息：
条件关系："如果-那么-否则"

时间依赖："下周还下雨"

决策逻辑的核心结构

推理能力的限制

擅长：结构化查询
- 模式匹配 - 路径查找 - 找到所有与"我"相关的"计划"

不擅长：逻辑推理
- 反事实推理："如果不下雨会怎样？" - 假设检验 - 类比推理

最佳实践

自然语言 + 结构化元数据

以完整、简洁的自然语言形式保存复杂信息，辅以 JSON Cards 等结构
化元数据进行索引和检索。

在信息完整性与查询效率之间取得最佳平衡。

案例分析：ChatGPT 的记忆系统
四层上下文架构

通过逆向工程发现，ChatGPT 每次收到消息时会注入四层上下文：

1. Session Metadata（会话元数据）
设备类型、浏览器、时区、订阅级别等，会话结束后不保留

2. User Memory（用户记忆）
用户显式存储的长期事实（如"记住我是..."），每次请求都注入

3. Recent Conversations Summary（对话摘要）
近期对话的轻量级摘要（约15条），只包含用户消息，不含助手回复

4. Current Session（当前会话）
滑动窗口内的完整对话历史，超出 token 限制时旧消息被截断

关键设计选择

无向量数据库
不使用传统 RAG 的向量检索，而是预计算轻量级摘要直接注入，牺牲详
细历史换取速度和效率

被动记忆机制
只有用户显式请求"记住这个"或模型检测到符合 OpenAI 标准的事实才
会存储

Simple Notes 模式
每条记忆是独立的事实陈述，缺乏信息之间的关联结构

API 不可用
记忆功能未向开发者开放，限制了第三方应用集成

参考：Manthan Gupta, "I Reverse Engineered ChatGPT's Memory System"

案例分析：Claude 的记忆系统
与 ChatGPT 的核心差异

Claude 采用了完全不同的记忆架构：按需检索而非预计算注入。

User Memories（用户记忆）
与 ChatGPT 类似的长期事实存储，但支持隐式更新——系统会在后台定
期根据对话内容自动更新记忆

Rolling Window（滚动窗口）
约 190k token 的完整消息历史，超出后旧消息被丢弃

conversation_search 工具
按需搜索历史对话，按主题或关键词检索，仅在模型认为需要时调用

recent_chat 工具
基于时间检索近期对话，同样是按需调用

设计哲学对比

ChatGPT：预计算 + 注入

每次请求自动注入对话摘要，保证基本的跨会话连续性，但摘要是轻量
级的，缺乏细节

Claude：选择性检索

不自动注入历史摘要，而是让模型自主判断何时需要历史上下文，然后
通过工具调用检索

权衡取舍

维度 ChatGPT Claude

连续性 自动保证 依赖模型判断

细节深度 较浅 可按需深入

效率 固定开销 按需消耗

参考：Manthan Gupta, "I Reverse Engineered Claude's Memory System"

ChatGPT 与 Claude 记忆系统的局限性
共同的不足

扁平化存储
两者都缺乏信息之间的关联和层次结构，无法表达复杂的语义关系

无消歧机制
当存在多个相关但不同的实体时（如两辆车），缺乏有效的区分手段

缺乏主动服务
两者都无法实现第三层次的主动预见性服务

各自的特定问题

ChatGPT
对话摘要过于简略，丢失重要细节

Claude
依赖模型判断何时检索，可能遗漏
相关上下文

三层次评估框架对照

层次 ChatGPT Claude

L1：基本回忆 ✅ 满足 ✅ 满足

L2：多会话检索 ⚠️ 摘要过浅 ⚠️ 检索不稳定

L3：主动服务 ❌ 未实现 ❌ 未实现

改进方向

采用 Advanced JSON Cards 增强元数据
引入上下文感知的自动提取
建立记忆之间的关联图谱
实现基于记忆的主动推理

实验：四种记忆模式的对比
实验设计（ projects/week2/user-memory ）

基于三层次评估框架，系统性比较四种模式：

模式 简单性 表达力 更新性 适用场景

Simple Notes ⭐⭐⭐⭐⭐ ⭐⭐ ⭐⭐⭐⭐ 快速记录临时信息

Enhanced Notes ⭐⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐ 需要完整语义的场景

JSON Cards ⭐⭐⭐ ⭐⭐⭐ ⭐⭐⭐⭐ 结构化信息管理

Advanced JSON ⭐⭐ ⭐⭐⭐⭐⭐ ⭐⭐⭐ 需要消歧的关键信息

关键发现

没有"最好"的模式

最优选择取决于具体场景、成本预算和任务需求

混合使用是趋势

Simple Notes 快速记录 + Advanced JSON 处理关键信息

第三部分：记忆的检索

传统 RAG 的局限性
问题：扁平化处理导致信息丢失

案例一：黑猫白猫的计数问题

知识库中有 100 个独立案例：

90 只黑猫
10 只白猫

用户问："黑猫和白猫的数量比例？"

RAG 系统的困境：

检索受限于 top-k（如 k=20）
无法保证召回全部案例
只能基于不完整样本推理
结果：错误的比例结论

案例二：Xfinity 优惠规则

知识库中有三个孤立案例：

退伍军人 John 成功申请优惠
医生 Sarah 获得折扣
教师 Mike 不符合条件

用户问："我是护士，能享受优惠吗？"

RAG 系统的问题：

"护士"与"医生"语义相近
优先检索到 Sarah 的案例
错误推断护士也可以
根本原因：未召回完整规则边界

核心问题

简单的 RAG 方式，即把原始案例直接丢进知识库，是远远不够的。必须在索引阶段投入计算资源，对原始知识进行主动的提炼、抽象和结构化。

解决方案：知识提炼与结构化
案例一的正确做法

预先提炼统计摘要

将 100 个个体案例压缩为：

摘要文档

"共有 100 只猫： - 90 只黑猫（90%） - 10 只白猫（10%）"

结果：一次检索就能获得准确、完整的统计信息

案例二的正确做法

提炼明确规则

从三个孤立案例中提取：

规则文档

"Xfinity 优惠仅适用于： - 退伍军人 - 医生

其他职业不符合条件。"

结果：无论用户问及任何职业，一次检索就能获得完整、准确的规则定义

核心原则

将"100 个个体案例"压缩为统计摘要，将"三个孤立案例"提炼为明确规则。只有这样，才能构建出真正高效、可靠的 Agent 知识体系。

结构化索引：RAPTOR vs GraphRAG
RAPTOR：树状层次结构

自下而上的递归抽象

1. 叶子节点：文档切分为小文本块
2. 聚类：语义相近的块分组
3. 摘要：为每组生成父节点
4. 递归：逐层抽象到根节点

检索过程：
从高层摘要定位宏观概念
沿树向下钻取到具体细节
由宏观到微观的检索路径

擅长
捕捉知识的层次结构和抽象关系

GraphRAG：网络关联图

实体-关系建模

1. 提取实体：人物、地点、概念、术语
2. 提取关系：实体之间的各种关系
3. 社区发现：语义紧密关联的实体集群
4. 集群摘要：为社区生成摘要

检索过程：
定位核心实体
遍历关系边找到相关实体
通过社区分析提供上下文

擅长
揭示知识的横向关联和网络结构

两者关系

并非互相取代，而是互补。理想方案是结合使用，构建既有深度又有广度的立体化知识索引。

上下文感知检索：解决上下文丢失
问题：孤立文本块的歧义

示例文本块：

"该公司第二季度的收入增长了3%"

缺失的上下文：

"该公司"是哪家公司？
报告发布于何时？
与哪个产品线相关？

结果
语义信息严重损失，检索准确率下降

解决方案：上下文前缀

Anthropic 的上下文感知检索

第一步：为文本块生成上下文前缀

LLM 生成：

"本段内容节选自 ACME 公司 2025 年第二季度财务报告的’关键业绩指
标’章节"

第二步：拼接后索引

"本段内容节选自 ACME 公司 2025 年第二季度财务报告的’关键业绩指
标’章节 该公司第二季度的收入增长了3%"

效果
结合 BM25，检索失败率降低 49%； 结合重排序器，失败率降幅达
67%

用户记忆的双层结构

📋 JSON Cards（常驻上下文）

结构化核心事实，随身备忘录

护照 2025-02 过期 · 东京之行

🔍 上下文感知 RAG（按需检索）

非结构化对话细节，强大搜索引擎

[上下文：11月预订1月航班...]

🔗 两者必须协同工作

1. JSON Cards
提供事实框架

2. LLM 推理
发现潜在关联

3. RAG 验证
获取对话证据

4. 主动服务
护照快过期！

JSON Cards 告诉 Agent "有什么"，RAG 告诉 Agent "细节是什么"，二者缺一不可

Agent 记忆架构
上下文常驻
📋 基础知识 → System Prompt
用户 JSON Cards 直接放入 Agent 上下文，无需调用工具即可访问

三个检索工具

🔍 search_user_memory
Agentic Search on User Memory

后端：Embedding Search → Rerank → 返回相关记忆

🔍 search_conversations
Agentic Search on Conversation Summaries

后端：Embedding Search → 返回相关历史对话摘要

📜 load_recent_conversations
Load Last N Conversation Summaries
直接加载最近 N 轮对话的摘要，无需语义搜索

架构示意图
┌─────────────────────────────────┐
│ Agent │
│ ┌───────────────────────────┐ │
│ │ System Prompt │ │
│ │ + User JSON Cards │ │
│ └───────────────────────────┘ │
│ │
│ Tools: │
│ ├─ search_user_memory() │
│ │ └→ Embedding → Rerank │
│ ├─ search_conversations() │
│ │ └→ Embedding Search │
│ └─ load_recent_conversations() │
│ └→ Last N summaries │
└─────────────────────────────────┘
 │
 ▼
┌─────────────────────────────────┐
│ Memory Store (Vector DB) │
│ • User memories (chunked) │
│ • Conversation summaries │
└─────────────────────────────────┘

设计原则
高频信息常驻上下文，长尾细节按需检索

主动服务：存储+检索的自然结果
核心洞察

主动服务不是独立的能力层

当存储和检索做好了，主动服务就会自然发生。它是结构化存储与智能
检索协同工作的涌现结果。

为什么会自然发生？

结构化存储（JSON Cards）提供：

关键事实常驻上下文（如护照有效期）
元数据支持关联推理（如时间戳、实体类型）

智能检索（上下文感知 RAG）提供：
按需访问历史对话细节
自动连接相关信息片段

两者结合，Agent 自然能发现"东京机票在1月→护照2月过期"这样的关联

主动服务的实例

国际旅行预警
JSON Cards 存储护照信息 + RAG 检索航班预订 → 自动发现时间冲突

设备损坏处理
JSON Cards 存储设备和保险信息 → 自动列出所有适用的保护选项

报税季准备
JSON Cards 存储收入类型 + RAG 检索交易记录 → 自动汇总相关文件

实现路径
不需要单独为"主动服务"设计机制。专注于做好存储和检索，LLM 的推
理能力会完成剩下的工作。

第四部分：记忆的评估

为什么需要评估？
评估是 Agent 工程的指南针

Agent 系统的构建涉及大量设计决策，而这些决策往往没有显而易见的"正确
答案"。

关键决策点

工作流设计：Workflow vs Autonomous 模式
提示词设计：结构化 vs 规则列表
记忆模式：Simple Notes vs JSON Cards

检索策略：预计算注入 vs 按需检索

核心洞察
某些看似合理的设计实际上会损害性能，而另一些看似琐碎的细节却能
带来显著提升。只有通过严格的对比评估，这些反直觉的真相才能被揭
示。

评估的三重价值

1. 指导设计决策
在没有评估的情况下，我们只能依靠直觉，而直觉往往靠不住

2. 提供改进信号
不仅告诉"好还是不好"，更重要的是揭示"为什么好/不好"

3. 支撑模型升级决策
新模型发布时，只有在自己的评估集上测试，才能做出数据驱动的升级
决策

消融实验方法论
保持系统其他部分不变，只修改一个特定组件，观察对整体性能的影响

评估环境的基本组成
五大核心要素

1. 数据集（Dataset）
定义任务集合，每个任务包含初始状态、目标描述、参考解决方案

2. 环境状态（Environment State）
维护任务执行过程中的所有可变信息（数据库、文件系统、对话历史）

3. 工具接口（Tools）
Agent 与环境交互的通道，需保证功能完整但避免过度简化

4. 评价指标（Rubric）
定义如何量化 Agent 表现，是评估中最具挑战性的部分

5. 执行协议（Interaction Protocol）
规定交互模式和终止条件

人机交互型评估的关键原则

渐进式信息透露

绝不能一开始就把用户掌握的所有信息全部暴露给 Agent。信息应该按
需、渐进地在对话过程中透露。

用户模拟（User Simulation）

用另一个 LLM 扮演用户角色，根据预定义指令：

逐步透露必要信息
回应 Agent 的询问
任务完成后发出终止信号

双重验证机制

检查数据库最终状态是否正确
检查对话中是否输出了必要的关键信息

参考：τ-bench / τ²-bench 评估框架

Rubric：LLM 评判的依据
什么是 Rubric？

Rubric（结构化评分标准）是让 LLM-as-Judge 评判过程客观、一致、可解
释的核心工具。类似于高考、GRE 写作、托福口语的评分细则。

四个设计准则

基于专家指导：反映领域专业知识，捕捉正确回应所需的核心事实、
推理步骤

全面覆盖：涵盖多个维度（准确性、连贯性、完整性），同时定义正
面和负面标准

重要性权重：事实正确性必须优先于文体清晰度（Essential /
Important / Optional / Pitfall）

自包含评估：每个评价项独立可操作，不依赖外部上下文

用户记忆评估的 Rubric 示例

防范奖励作弊
在 Rubric 中明确定义反向指标：幻觉、讨好用户、关键词堆砌、回避问
题

dimensions:

 factual_precision:

 weight: essential

 levels:

 - 4: 所有事实完全正确

 - 3: 关键事实正确，细节略有偏差

 - 2: 部分事实正确

 - 1: 事实存在重大错误

 factual_recall:

 weight: important

 levels:

 - 4: 提供了所有相关信息

 - 3: 提供了主要信息

 - 2: 遗漏部分关键信息

 hallucination:

 weight: veto # 一票否决

 description: 任何编造的信息直接判定失败

评估方法论：来自 Anthropic 的最佳实践
三种评估类型

单元测试（Unit Tests）
确定性检查，用于验证格式、边界条件等可明确判断对错的场景

LLM-as-Judge
用 LLM 评判输出质量，配合清晰的评分标准（rubric）可以达到与人类
判断高度一致的效果

人工评估
在现实条件下测试，发现自动化评估无法捕捉的"粗糙边缘"

好的评估特点
具体清晰：有单一正确答案
真实世界：反映用户实际会遇到的问题
可诊断：足够简单以理解失败原因
代表性：反映终端用户体验

Agent 评估的三个维度

最终答案正确性
Agent 是否给出了正确的最终答案？使用 LLM Judge 对比参考答案进行
评分

工具使用准确性
Agent 是否选择了正确的工具？参数是否正确？能否从错误中恢复？

最终状态正确性（τ-bench）
Agent 是否达到了正确的最终状态？适用于有副作用的任务（如取消订
单）

评估技巧

如果每次系统改动对结果的影响越明显，需要的测试样本就越少
使用真实任务：有明确正确答案的用户实际场景
没有什么能完美替代人工评估：反复测试和直觉检查不可或缺

参考：Anthropic, "Context Engineering Best Practices" (AWS re:Invent 2025)

第五部分：前沿研究
ReasoningBank: 从经验中学习推理策略

现有 Agent 记忆系统的局限性
问题：Agent 无法从历史中学习

当前状态

现有的 LLM Agent 在处理连续任务流时，无法有效学习积累的交互历史。每
个任务都被孤立处理，导致系统不断重复过去的错误，丢失有价值的洞察。

根本问题

缺乏真正的自我演化能力：Agent 不能随着时间推移而变得更强。

现有方法的缺陷

两类主流方案

原始轨迹存储
直接保存交互过程，缺乏提炼

成功流程记录
只保留 workflows / procedures，忽视失败

共同缺陷

无法提取高层次、可迁移的推理模式
过度强调成功经验，忽视失败的宝贵教训
被动记录，无法生成可执行的指导

ReasoningBank：推理策略的记忆库
核心创新

从成功和失败中学习

ReasoningBank 从 Agent 自我判断的成功和失败经验中提炼可泛化的推理策
略，不依赖真实标签（ground-truth labels）。

记忆内容的差异

方法 存储内容

原始轨迹 完整交互序列

成功流程 有效的行动模式

ReasoningBank 可迁移的推理策略

闭环学习机制

1. 检索相关记忆
面对新任务时，从 ReasoningBank 中检索语义相关的推理策略

2. 指导行动决策
用检索到的策略指导 Agent 的交互过程

3. 分析新经验
任务完成后，Agent 自我判断成功或失败

4. 提炼并整合
从新经验中提取推理策略，更新 ReasoningBank

为什么失败经验同样重要？
失败中的宝贵教训

传统观点的误区

大多数记忆系统只关注成功案例，认为失败不值得保存。但失败经验包含了
关键的"预防性"知识。

示例：网页导航任务

成功经验告诉你： "点击’男装’类别找到商品"

失败经验告诉你： "不要在首页直接搜索，搜索框对复杂查询支持差"

失败经验提供了成功路径无法覆盖的边界条件。

对比信号的价值

成功 vs. 失败的对比学习

当同一类任务既有成功也有失败案例时，Agent 可以通过对比发现：

哪些策略在特定情境下有效
哪些看似合理的路径实际会失败
成功与失败的关键分界点

ReasoningBank 的处理方式

从成功经验提取：有效策略（"这样做可行"）

从失败经验提取：预防性策略（"避免这样做"）

两者结合形成更完整的推理知识。

MaTTS：记忆感知的测试时扩展
深度 vs. 广度

经验扩展的两种路径

广度扩展
增加更多任务数量（更多用户、更多场景）

深度扩展（MaTTS）
在每个任务上进行更多探索（更多尝试、更多变体）

MaTTS 的核心思想

通过在单个任务上分配更多计算资源，生成丰富、多样的探索经验，为记忆
合成提供更高质量的对比信号。

记忆与扩展的协同效应

正向反馈循环

两种扩展模式

并行扩展
同时生成多个独立的解决路径

顺序扩展
根据前一次结果调整下一次尝试

MaTTS 将记忆驱动的经验扩展确立为 Agent 系统的新扩展维度。

高质量记忆 → 更有效的探索 → 更丰富的经验
 ↑ ↓

 ←──── 更强的记忆合成 ←────

实验结果与关键发现
基准测试结果

三大评估场景

WebArena（网页浏览）

复杂的网页交互任务
需要多步骤导航和操作

Mind2Web（网页理解）
真实世界网页的元素识别
动作预测和执行

SWE-Bench-Verified（软件工程）
代码库级别的问题修复
需要理解大型代码库

核心指标

效果：最高 34.2% 相对改进
效率：减少 16.0% 交互步骤

关键发现

记忆质量 > 数量
检索 1 个相关记忆的效果优于检索 4 个记忆。过多记忆可能引入冲突或
噪声。

失败经验有独特价值
结合失败经验的系统表现优于只学习成功案例的系统。

涌现行为
随着记忆积累，Agent 开始展现出之前未见过的复杂推理策略。

MaTTS 与记忆的协同
ReasoningBank + MaTTS 的组合效果最优，验证了记忆与扩展的正向循
环。

ReasoningBank 对用户记忆系统的启示
从任务记忆到用户记忆

共同的核心挑战

ReasoningBank 解决的是 Agent 如何从任务交互中学习；用户记忆系统解决
的是 Agent 如何理解和服务用户。两者面临相似的核心问题：

如何从原始数据中提炼高层次知识？
如何在检索时找到真正相关的信息？
如何让记忆系统持续演化？

关键洞察

不能简单存储原始数据，必须投入计算资源进行主动的提炼、抽象和结
构化。

可迁移的设计原则

原则一：双向学习
不仅从用户的正向反馈中学习偏好，也从负向反馈中学习边界

原则二：闭环更新
记忆系统不是一次性构建，而是随着交互持续演化

原则三：质量优先
记忆的相关性和质量比数量更重要

原则四：自我判断
通过 LLM-as-a-judge 实现自动化的质量评估，减少人工标注依赖

总结：从记忆到认知的演进
技术演进路径

1. 记住事实

Simple Notes / JSON Cards

✓ 准确存储结构化信息

2. 理解上下文

Enhanced Notes / Advanced JSON

✓ 保留语义完整性和情境信息

3. 跨会话关联

结构化索引 + 上下文感知检索
✓ 消歧、发现复合事件

4. 主动预见

双层记忆架构 + 深度推理
✓ 无需明确请求即可提供帮助

核心洞察

个性化是真需求

从推荐系统的成功看，个性化产品更符合人性。AI Agent 也需要个性
化记忆来适应每个用户的独特价值观和偏好。

偏好学习是难点

事实信息相对简单，但学习用户偏好面临上下文依赖、过度泛化等挑
战，需要精细的评估和持续迭代。

知识提炼是关键

不能简单地把原始数据丢进知识库，必须投入算力进行主动提炼、抽
象和结构化。

双层架构是最优解

结构化核心事实（常驻上下文）+ 上下文感知检索（按需访问），在
完整性与效率间取得平衡。

未来展望
技术挑战

偏好学习的精细化

更好的上下文依赖建模
区分一次性行为与长期偏好
减少过度泛化风险

记忆压缩与组织

自动发现知识层次
动态调整记忆结构
平衡详细度与可访问性

跨模态记忆整合

文本、图像、音频的统一表示
多模态信息的关联检索

应用前景

个性化价值对齐

从普世价值到个体价值
动态适应用户的价值观演变
在细节层面实现真正的个性化

操作系统级助手

跨设备、跨应用的统一记忆
长期持续的用户画像构建
真正的主动式服务

隐私与透明性

用户对记忆的完全控制
可解释的记忆管理
敏感信息的分级保护

愿景

构建一个真正"懂你"的 AI 助手，不只是记住你说的话，而是理解你是谁，预见你的需求，成为你可信赖的终身伙伴。

从记忆到认知：
AI Agent 如何实现真正的个性化服务

Bojie Li

Co-Founder & Chief Scientist, Pine AI

Powered by

从简单记录到深度理解，从被动响应到主动服务

https://sli.dev/

