Bojie Li
Cofounder & Chief Scientist, Pine Al

Based on conversations with OpenAl, Anthropic, Google DeepMind, and other top Al companies
at AWS re:Invent 2025 & NeurIPS 2025

What We’ll Cover

Technical Insights

Vibe Coding: Where Al shines and where it doesn’t
Context Engineering: Managing context rot
File Systems: As agent interaction buses

Scaling Law: Frontline vs. top scientists’ views

Industry & Strategy

Silicon Valley Giants: Google, OpenAl, xAl, Anthropic
Compensation Wars: Million-dollar salaries
Application Development: Scientific methodology

Startup Strategies: Survival in giants’ shadows

Part I: Vibe Coding

Vibe Coding: Two Extremes

Al coding assistance shows polarized effectiveness

High Efficiency (3-5x%) @ Limited Effect
= Startup MVP development = Research code
= One-off scripts = Core infrastructure
= CRUD/boilerplate code = Complex refactoring
= Data processing = Big tech daily work

Clear requirements, standard tech stacks Deep understanding needed, high coordination costs

Scenario 1: Startup MVP (3-5x Efficiency)

Why it works:

@& Perfect Conditions

0 to 1 prototype development

Speed matters more than perfection
Finding PMF is the priority

Can ship daily/weekly for fast iteration

Simple tech stack

React, Django, FastAPI
Abundant training data

Lots of boilerplate

2% Small Team Benefits

Low communication overhead
Fast decisions
Simple code review

No cross-department coordination

2 Typical Tasks

CRUD business logic
Simple API development
Frontend forms/pages

Data processing scripts

Scenario 2: One-off Scripts (Universal 3-5x)

Works for everyone, including OpenAl & Google researchers

“\ One-off Scripts

Data analysis scripts
Data migration scripts
Batch processing tools
Use-and-discard code

Low quality requirements

Why it works:

Clear task boundaries
No deep business logic understanding needed
Limited impact if errors occur

Even top Al researchers use Al extensively for these

4 Glue Code (Boilerplate)

Configuration files
Data transformation layers
API call wrappers

Test case generation

Scenario 3: Big Tech Daily Work (Limited Gain)

Why efficiency gains are modest:

Time Distribution L System Complexity] Strict Reviews
= 30% Meetings = Deep architecture understanding = Multiple rounds of code review
. 20% Coordination = Multi-team codebases ® Various lints and tests
= 20% Documentation » Backward compatibility = Long deployment process
m 15% Debugging m Al easily introduces regressions m Even if Al writes fast, process time
» 15% Coding remains

Al only optimizes the last 15%

Good for: Refactoring repetitive work, test case supplements, simple bug fixes, documentation

Scenario 4: Research Code (Almost Useless)

Why AI can’t help much:

« Intelligence-Intensive @ Highly Customized

= Every research project is unique
= No similar examples to reference
m Thinking time >> Coding time

= The bottleneck is insight, not typing

= Frontier research, not in training data

= Requires deep theoretical background . Key Insight:

When the hard part is figuring out what to write, not how to write it,
Al can’t help.

= Needs innovative thinking

= Al doesn’t understand it either

Scenario 5: Core Infrastructure (Can Hurt)

Why to avoid Al for critical systems:

! High Risk Areas

= Database schema changes

» Authentication/authorization systems
= Core API contracts

= Payment processing

m Distributed systems coordination

@ Problems Better Approach
= Subtle bugs with serious consequences 1. Design by senior engineers
» Hard to test comprehensively 2. Careful manual implementation
m Al lacks system-wide context 3. Extensive review
» Security vulnerabilities 4. Al can help with: Documentation, Test cases, Boilerplate, etc.

= Data corruption risks

Best Practices from Silicon Valley

What top Al teams actually do:

“\ PR Size Limits # Test-Driven Quality
= < 500 lines per PR = Generate tests first
= Easier to review m Al writes code to pass tests
= Easier to revert m Automated regression detection
m Al-generated code is easier to review in small chunks = Continuous validation
@ Multi-Agent Workflows _ Large Refactoring
= Fully automated agent collaboration = Break into small, independent PRs
= Code generation - Review - Test = Fix = Each PR is self-contained
= Minimal human intervention m Merge frequently

® Avoid long-lived branches

Code Ownership Principle

@ What This Means

You must understand every line

You’re responsible for bugs and issues

Don’t blindly trust Al output

Review Al code as carefully as junior developer code

Al is a tool, not a scapegoat

"If AI wrote it, but you shipped it,
it’s YOUR code."

Part II: Scientific Application Development

Top AI Companies’ Methodology

Key insight: Treat AI development like science, not just engineering

ul Evaluation System Data Flywheel

Rubric-based evaluation for every Automated iteration and continuous
feature improvement

2¢ Team Separation

Foundation model vs. application teams

Rubric-Based Evaluation

Core principle: Measure everything objectively
| What is a Rubric?

A detailed scoring framework that breaks down quality into measurable criteria

Example: Code Generation Quality Rubric

1. Correctness (0-40 points)
- Compiles without errors (10)
- Passes all test cases (20)
- Handles edge cases (10)

2. Code Quality (©-30 points)
- Follows style guide (10)
- Proper error handling (10)
- Good variable names (10)

3. Efficiency (0-30 points)
- Time complexity (15)
- Space complexity (15)

Evaluation System Components

@ Test Dataset Construction

s

Real user queries (anonymized)
Edge cases identified from failures
Adversarial examples to prevent over-fitting

Continuous updates as product evolves

@ Automated Grading

LLM-as-judge with rubrics
Deterministic checks (regex, exact match)
Unit test pass rates

Human eval for ambiguous cases

~ Continuous Iteration

Baseline Eval

L™

Make Changes

‘

Run Eval

Improved?

Yes

'

No,

.

Ship It

Analyze Failures

Monitor Production

Update Test Set

Foundation Model vs. Application Teams

Model team priorities & app team limitations

“ Model Team Priorities @ App Teams = External Startups
Top priorities: Common limitations:
1. Four major benchmarks: = Use same base model API
= Cannot influence model training direction
= Math
. = Cannot request targeted optimization
= Coding
= Computer Use App team’s 2 advantages:

= Deep Research . . .
= Can more easily get model team to review prompts, improve

2. Long-term model capability: context engineering

= Token costs use internal pricing, much cheaper than external
* Intelligence improvement API calls (e.g., Cursor API cost >> Claude Code subscription)

= General capability enhancement
External startup advantages:

3. Vertical domain needs:
= Can use multiple models (Google internal only Gemini)

= Very low priority = Can do Mashup Agents: OpenAl + Anthropic + Gemini

= Basically not responded to = More flexible tech choices

Part III: Silicon Valley Giants

Google DeepMind: Strengths (1/2)

1. Leadership Commitment 2. Compute Dominance

» Sergey Brin returned after ChatGPT launch Hardware advantage:

= Demis Hassabis (DeepMind CEO): strong in both tech and

management = TPU + GPU dual track
= Can unite thousands of smart people = Self-developed TPU with continuous capacity
® Avoids serious internal conflicts and politics m Years of Nvidia GPU procurement
= Contrast: Meta (Zuckerberg delegates Al), Microsoft/Apple (execs = Total compute possibly several times OpenAl’s

have limited Al understanding)
Model scale advantage:
Why Gemini App merged into DeepMind?
» OpenAl main models: GPT-4o series, hundreds of B params

* Building apps is essentially Research m Google: Gemini 2.5/3 Pro: Trillions of params (10x larger)
» Needs scientific methodology, extensive experiments, data-driven = Gemini 3 Flash params ~ GPT-40
approach

» Needs comprehensive Evaluation system Why OpenAl doesn’t use bigger models?

= Aligns with Research thinking mode = Not enough compute for training & serving
m Too many users (ChatGPT > 1B users)
= Gemini = 600M users, API calls = 1/5 of OpenAl

Google DeepMind: Strengths (2/2)

3. Human Resources

Massive team scale:

= Nano Banana Pro (Gemini image gen):
= Algo team: < 10 people
= Data + Infra team: = 1000 people
= OpenAl equivalent:
®= Algo: < 10 people

= Data + Infra: order of magnitude less
Key advantage:

= Can construct massive domain-specific training data
» Example: Schematics, 9-grid images, etc.
® Requires manual labeling and data construction

» Today’s base models still highly dependent on human-constructed
data

4. Ecosystem Moat

= Chrome browser:

= Gemini button integrated in top-right
m Better than ChatGPT Atlas, Perplexity Comet

= Can directly ask about current page, summarize long articles
= Workspace integration:

m Google Calendar: Gemini can schedule
m Google Drive: Gemini can read/write docs
= Gmail: Gemini can handle emails

= Natural user base

= YouTube data:

m Years of video data accumulation, multimodal training resource

= Search engine:

m Google Search shows Al Summary

Google DeepMind: 2 Weaknesses

@/ Big Company Inefficiency

Multiple approval layers
Long launch cycles
Risk-averse culture
Internal politics

Coordination overhead

Example: A feature that takes startup 2 weeks might take Google
6 months

@" Only General Use Cases

= Won’t do vertical/niche optimizations
= Focus on broad applicability
= "One size fits all" mentality

m Doesn’t optimize for specific industries

Opportunity: Leaves room for vertical-specific startups

OpenAl: Anxiety & Resource Constraints

Sources of Anxiety Resource Constraints
1. Competition Intensifying The Dilemma:
= Google, Anthropic, XAl catching up = Most users: > 1B users
= Open-source models improving m Limited compute: Not as rich as Google
m Lead is narrowing = Must balance: Training vs. Serving
2. Talent Structure Issues User experience compromises:
= Too many research scientists m Early ChatGPT Plus ($20/mo): Violently truncated context
= Not enough engineers = Context window only 32k tokens
®» "Academic culture’ slowing down = Severe hallucinations: Lost previous context, later all nonsense
= Focus on papers vs. products = Author’s experience: Upload book for summary;, first few pages OK,
rest hallucination

Model routing controversy:

m GPT-5 auto-router: small problems - small model
®= Routing inaccurate: important problems - small model
= Users can’t see which model is answering

m Experience degraded, many complaints

XAl (Elon Musk): Extreme Execution

=
L]

Philosophy
Results > Research
Ship fast, iterate fast
No academic baggage
Extreme accountability

Zero tolerance for underperformance

Work Intensity

70+ hours/week for everyone
Weekend work expected
"All-in" mentality

Not for everyone

"No Research Engineers, only Engineers"

@ What This Means
Good:

= Extremely fast execution
= No bureaucracy
= High iteration speed

= Strong results-driven culture

= Burnout risk

= High turnover

» Less fundamental research

= Work-life balance? What’s that?

Anthropic: Focus on Coding & Agents

@ Strategic Focus

Constitutional Al (core differentiator)
Code generation (challenging OpenAl)
Agentic systems (future bet)

Claude Code, Claude Computer Use

Context Engineering expertise

Technical Philosophy

Safety-first approach

Key Innovations

1. Context Engineering

Best practices for long contexts
Sub-agent architectures
Skills system

Progressive disclosure

2. Agentic Tools

= Long context windows (200K) Claude Code
= Interpretability research Agent SDK
m Scientific methodology MCP protocol

3. Developer Focus

= Excellent documentation

= Strong developer relations

m (Clear best practices

The Talent War: Million-Dollar Salaries

Al compensation has reached unprecedented levels

@ Salary Tiers (Annual USD)
Fresh Top PhD:

» Total comp: $1.5M - $2M
» Conditions: High research level

= Mostly Options (but OpenAl is big enough to cash out)
Experienced Al Engineers:

= Total comp: $4M - $5M

» Conditions: Experience at top AI companies or notable academic work
Meta Super Intelligence Level:

» Total comp: $10M+/year
» Mostly Meta stock (can be cashed)

ul Al vs Non-Al Gap

Al Engineers $1M+/year

Non-AI Engineers $250K - $300K/year (Google normal)

3-4x gap for same level

First wave: Meta’s Super Intelligence team started crazy hiring, lifted
entire market salary levels

Beyond Salaries: Marketing Wars

Massive spending on visibility

< Billboard Wars
San Francisco Airport highway:

m Tens of kilometers of billboards
®» Hundreds of Al company ads

= Traditional companies (Snowflake) also claiming Al

Funny example - Redis:

"My boss really wants you to know we’re an Al company"

Everyone rushing to align with Al

& Al War vs. Group-Buying War
Group-Buying War (Internet Era):

= Money spent on: Operations, sales, ads
m Core: Grab market, merchants, users

= Human wave tactics
Al War:

= Money spent on: Top talent + GPUs
= Core: Train models, compute power, talent

m Elite tactics, best research team wins
Resource scale:

= 500-1000 GPUs per person

= $1M+ salary per person

Resource Constraints at Foundation Model Companies

Why they can only work on "big problems”

@ Cost Structure @ Must Prioritize

Per model training run:
Will do:
= $10M - $100M+ in compute
= Months of preparation m General capability improvements

= Thi that illi
= Hundreds of GPUs/TPUs tngs that serve mitions

. = Benchmark improvements
= Massive datasets

= Platform features
= Large teams

Result: Can’t do small experiments

Won’t do:

= Niche use cases
m Vertical-specific optimization
= Small market features

m Custom training for < 100K users

Part IV: Scaling Law Perspectives

The Great Divide: Researchers vs. Scientists

Frontline engineers see different reality than top scientists

& Frontline Researchers « Top Scientists

"Scaling Law is NOT dead" "We need new paradigms”

= Working on daily model improvements m [lya Sutskever

m See continuous gains from scaling m Richard Sutton

= Optimistic about further progress = Yann LeCun

= Engineering solutions working well
Concerns:
From: OpenAl, Anthropic, Google DeepMind employees . .
= RL Sampling Efficiency

m Model Generalization

= Continual Learning (ideal form still in research)

Why the Divergence?

Frontline researchers: Top scientists are relatively detached from engineering practice

@ Problems Scientists Point Out K Generalization Solutions

Important issues: Engineering methods:
» RL Sampling Efficiency problem ®m Midtrain / SFT: Manually construct high-quality domain data for
» Model Generalization problem continued training

= Domain datasets: Collect and label data for specific scenarios

These are real and important . g . . .
P = Sim Env: Build simulation environments for controlled learning

*\ Engineering Solutions m Rubrics-based Reward: Reward based on scoring rubrics, not simple
binary feedback

1. Sampling Efficiency - Use compute
Not a silver bullet, but works in practice for many real-world

= RL sampling efficiency much worse than supervised learning domains
= But with enough compute, brute force sampling works

= This is why top companies buy tons of GPUs

Frontline consensus: Both Pretrain and Posttrain haven’t hit ceiling. Release every 6 months with clear capability jumps. Still lots of room for

Consensus: Test on Small Models First

Universal practice across all companies

Standard Workflow

1. TIdea - 2. Small model test - 3. Verify improvement - 4. Scale up

K

= Small models (1B-7B parameters) are cheap to iterate
= Can run 100s of experiments for cost of 1 large run
= Most improvements transfer to larger models

» Failures fail fast and cheap

If it works at small scale: X If it doesn’t work at small scale:
m Very likely to scale up = Almost never works at large scale
= Improvement may even amplify = Save millions in compute

= Worth investing in large run m Back to drawing board

Part V: Context Engineering

What is Context Engineering?

"The discipline of optimizing the utility of tokens against the inherent constraints of LLMs"

System Prompt Tools Data Retrieval Long Horizon
"Say less, mean more" "Every tool earns its place" "Load what you need, when Compaction, note-taking, sub-
you need it" agents
Minimal, precise instructions Self-contained, clear purpose

JIT Context

Data Retrieval: The Paradigm Shift

Old: Pre-Loading (Traditional RAG) - New: Just-In-Time

Lightweight Identifiers

Pass IDs, not full objects
Agent requests details if/when needed

Example: user_id: "12345" -
(agent calls get_user() if needed) >
Full profile

Progressive Disclosure

» Start with summaries
» Agent drills down as needed

= Example: File list - File metadata >
File contents

"Don’t send the entire library. Send a librarian."

Autonomous Exploration

Agentic Search: Give discovery tools,
not data dumps

Agent navigates information space

Example: search_docs() +
read_doc(detail _level) vsloading
all docs

Context Window & Context Rot

Context Window

All frontier models have a maximum number of total tokens able
to be processed in a single exchange

Anthropic’s context window: 200k tokens

Context Rot

As context grows, output quality regresses
Four types:

1. «# Poisoning: Conflicting info corrupts reasoning
2. * Distraction: Irrelevant info diverts attention
3. ? Confusion: Similar items become ambiguous

4. . Clash: Instructions contradict each other

Research: All models see performance degradation over long contexts
(Chroma Technical Report: Context-Rot)

Three Strategies for Long-Horizon Tasks

Compaction

Periodically summarize intermediate
steps and/or compress history

Reset context with compressed
summary

Retain only essential information

Trade: Minor detail loss for continued
operation

Example: "User wants X, tried Y,
learned Z" vs. full conversation

Structured Memory/Note-
taking

Agents maintain explicit memory
artifacts (external persistent storage)
Store "working notes": decisions,

learnings, state in structured format

Retrieved on-demand rather than kept
in context

Example: Decision log, key findings
document

Sub-Agent Architectures
» Decompose complex tasks into
specialized agents

m Each sub-agent has focused, clean,
narrow context

= Main agent orchestrates and
synthesizes results

» Example: Code-review agent spawns
doc-checker sub-agent

Skills: Progressive Disclosure in Action

Skills are organized folders of instructions, scripts, and resources that Claude can discover and load dynamically

pdf/SKILL.md

YAML Frontmatter

name: pdf
description: Comprehensive PDF toolkit for extracting text anc
merging/splitting documents, and filling out forms.

Overview
This guide covers essential PDF processing operations using P\

and command-line tools. For advanced features, see /reference
If you need to fill out a PDF form, read /form.md and follo.

pdf/reference.md

PDF Processing Advanced Reference

This document contains advanced PDF processing features...
pdf/forms.md

If you need to fill out a PDF form, first check to see...

Discovery: Claude navigates and discovers added detail as needed
Executable Scripts: Token efficient for operations better
accomplished by traditional code

Tool Design Best Practices

Elements of Strong Tool Design

name': '"search_customers
* Useasimple & accurate tool name description': "Search customer database by
name, email, or ID. Returns matching customer
= Detailed and well-formed descriptions

records.",
Include what the tool returns, how it should be used, etc. input_schema': {
type': "object",
= Avoid overly similar tool names or descriptions! properties”: {
query': {
= Tools that perform one action work better type': "string",
Try to have at most 1 level of nested parameters description': "Search term (name,
email, or customer ID)
= Provide examples - expected input/output format Be
max_results": {
= Pay attention to the tool results’ format type': "integer',
default": 10,
= Test your tools! Make sure agents use them well description’: "Number of results to
return (default: 10, max: 50)
3
s

required": ["query']

Effective Context Engineering Benefits

Handle context window limits Reduce context rot Optimize for prompt caching

> > -

Reliability Accuracy Cost & latency

File System as Agent Interaction Bus

Anthropic’s core view: Coding Agent is the foundation of all general-purpose Agents

X Tool Call Problems Advantages of File System Abstraction
Outputting large content unstable: Broad "Coding":
» Tool call outputs hundreds of lines » Includes docs, reports, any structured content

» Ifinterrupted midway, all work lost
Persistent:
= Cannot recover
m Written to file, content saved
Not iterable: . .
= Even if agent crashes, file remains

= Qutput is output, cannot modify
Iterable:
= Want to change one section? Regenerate all
» Can’t do "draft-revise-finalize" flow = Read file, modify part
= Multiple revisions, gradually improve

m Just like humans writing docs
Universal:

m |ls, read_file, write_file , edit_file , delete_file

= All SOTA LLMs understand these operations

Part VI: Startup Strategies

What Startups Should AVOID

X Don’t Fight Head-On with Base Model
Companies

Startups should NOT touch: General Coding Agent, Deep
Research, Computer Use

Why startups will lose:

= Can’t hire: People who truly understand model training are
extremely expensive. Startup raises millions to tens of
millions USD, hire a few people, money gone.

= Not enough compute: Training a general model, even post-
training, needs hundreds to thousands of GPUs. Startups can’t
rent that many.

= Not enough data: General capabilities need massive high-
quality data. Big tech has ecosystem advantages (YouTube,
Web Search). Startups can’t get this data.

X Don’t Casually Touch Model Training

1. People who truly understand models are too expensive

= They’re all at big tech, won’t easily leave
= Startups simply can’t poach them

= Model training needs lots of trial and error - significant
cost

2. Open-source + finetuning dilemma

= Open-source model quality 2 orders of magnitude worse
than closed-source

= Finetuning hard to bridge this gap, unless extremely
niche vertical domain

When to consider training:

= Only for specific scenario small models (8B/32B)

= Domain is quite niche, general models insufficient

What Startups SHOULD Do

Go Vertical + Master Context Engineering
Find your niche and build deep expertise:

= Domain expertise + Customer access

m Specialized data + Understanding of workflows
Context Engineering is HARD - requires serious expertise:

m Expert-level domain-specific prompts
m Specialized tools and sub-agent architectures

= Domain-specific evaluations and iterations

k&) Feedback loop for real business scenarios

= Capture user interactions and corrections - Learn from production failures

= Improve prompts based on real data - Refine knowledge base continuously

Build Domain Knowledge Base

Critical foundation:

= Curate high-quality domain-specific data
m Build proprietary knowledge graphs

= Integrate industry best practices

= The flywheel: More users - More feedback - Better context engineering - Better performance - More users

Startup Talent Strategy

Core principle: Hire smart, strong learners WITHOUT AI background

©" Why This Strategy Works

1. Al evolves too fast, weak compounding:

m Best practices change every 3-6 months

» Past experience depreciates quickly
2. New people reach frontier fast:

= Smart + strong learning ability + willing to dig deep
= 6-12 months - above-average industry level

= No PhD needed, no big-tech background needed
3. Massive cost advantage:

= 5-10x cost difference

What You Can’t Match

You can’t compete on:

= $1M- $10M salaries
m Prestigious brands (OpenAl, DeepMind)
= Massive compute budgets

= Large teams
What You CAN Offer:

= Ownership & significant equity
m Real impact on product

m Learning & growth

= Close to customers

= Mission & culture

= Fast iteration, no bureaucracy

Wait for Your Wave

#. Key: Stay Relevant
1. When there’s no wave, don’t give up:

= Solidly build your foundation
= Don’t think CV/NLP expertise is useless in LLM era

= Don’t give up because you don’t see opportunities
2. Prepare your team:

® Strong engineering capability
® Strong learning ability

® Strong cohesion
3. Stay Relevant:

= First Principle Thinking

m (Closely track frontier products and research

Stay Ahead of the Curve
4. Predict trends:

= Model and product trends

= When wave comes, you’re ready

5. Catch your wave:

= Can you quickly build and go to market?
m When users grow, is your data flywheel ready?

m ChatGPT, Gemini App, Cursor all have data flywheels

When your wave comes, are you prepared?

Part VII: Key Q &A Insights

Q1: Finetune or Use Closed-Source Models?

Conclusion: Closed-source + Context Engineering > Open-source + Finetune

ul Three Key Gaps
1. Knowledge Density Gap:

» Closed-source models lead by 2 generations
» Higher quality training data

= Better parameter efficiency
2. Reasoning Density Gap:

= Open-source (Qwen, Kimi) needs very long CoT
= Relies on longer thinking time for results

m Closed-source CoT is more compact and efficient
3. Generalization Gap:

= Open-source optimized for public benchmarks

m Weak generalization on non-benchmark scenarios

When to Use Open-source + Finetune

1. Extremely niche domain:

= Almost no data on public internet

= Must inject domain knowledge via finetuning
2. Data privacy requirements:

= Cannot send data abroad

= Must deploy locally
3. Extremely cost-sensitive:

= Huge volume, API costs unsustainable

m Self-hosting open-source is more economical

Q2: Is Personalization a Real Problem?

Yes, and it’s a core competitive advantage for the future

@ Why It Matters

Recommendation Systems Evolution:

= Traditional: Everyone reads same newspaper
» ByteDance: Everyone sees different content
= Insight: People live in different worlds with different values

m Personalized products are more human-centric
AI’s Future:

= Not just one "Universal Value"
= Should adapt to each user’s values and preferences

m Detailed value differences matter

“\ Technical Challenges

1. Factual Information (Easy)

Birthday, address, card numbers, work info

Just remember, no ambiguity

We’re already good at this

2. User Preferences (Very Hard)

Context-dependent:

Academic format for papers # travel guides

Al easily over-generalizes preferences

One-time vs. Long-term:

"I ordered Sichuan food yesterday"
"User loves Sichuan food"

Maybe friend’s preference, or one-time thing

Q3: Edge-Cloud Agent Coordination?

Future: Inevitable, but core challenge is APP state sync

I. Core Challenge: APP State Sync Solution: Mirror System
Login state problems: Douyin Phone’s approach:

» User logged into WeChat on phone = "Shadow system" on local device

» Cloud agent also needs to login? m Agent operates apps in background

= WeChat only allows one client > kick each other off = Apps think they’re in foreground

L = User operates real foreground
Fraud detection issues:

= Two systems parallel, non-interfering

= Cloud IP # Phone IP, may be in different countries

)) Ideal solution (needs OS support):
m Triggers fraud detection - account banned

®m Android/iOS/HarmonyOS system-level

Repeated login hassles:
= Sync APP state to cloud
= Need to re-login to all apps in cloud = Cloud agent operates cloud APP mirror
= Poor user experience = Sync back to phone when needed

= Privacy concerns

Two Independent Dimensions: Agent location (edge/cloud) x Model location (edge/cloud)

Q4: Best Practices for Using Al to Write Code?

Core principle: Humans must understand more than Al

@ Why?

® You must review AI’s code

= Al makes mistakes, humans find them

m Al can find simple syntax errors

= But complex architecture issues? Al struggles

2 Role Transformation

From: Coder
To: Architect + Reviewer

New Workflow

1. Requirements breakdown (Human)

Break into small tasks (< 500 lines)

2. Coding (AI)

Can parallelize multiple Als

3. Auto Testing (AI)

Run test suites

4. Code Review (Al)

5-6 different Review Agents
All pass - generate PR

5. Final Review (Human)

Approve or request changes

Q5: How to Ensure Workflow Stability When Model Updates?

Why Evaluation Matters

1. Models upgrade:

= Base models update every few months
» Each upgrade may break existing workflows

» Need rapid compatibility validation
2. Prompts adjust:

» Frequently need to optimize prompts
= Change A, might break B

= Need comprehensive regression testing
3. Avoid subjective judgment:

= Can’t rely on manual testing a few examples
= Time-consuming and not objective

= Easy to miss problems

Complete Evaluation System
1. Test Dataset:

= Extract representative cases from production
2. Rubric-based Assessment:

= Not just overall good/bad
m Break into multiple sub-metrics

= Score each independently
3. Automated Execution:

m Switch model, run tests

= Human review report
4. Continuous Optimization:

= Find new issues, add to dataset

= Form closed loop

Q6: How to Get Al Frontier Information?

Most recommended: X (Twitter)

£ Why X (Twitter)?
= China’s "Top 3 Al Media" (& 7T, a0, BF1i) all get
news from X
» First-hand papers and technical discussions

= Many top researchers share there

How to Use X?

» Follow technical leaders

» Follow accounts that specifically share papers

¥ QOther Sources

Academic:

m arXiv daily digest
m Top conferences (NeurIPS, ICML, ICLR)

Industry:

= Company blogs (OpenAl, Anthropic, etc.)

= Follow researchers on social media
Community:

= Al Discord servers
m Local meetups

m Conferences

Q7: Multi-Goal Prompt Conflicts?

"When I ask for A and B, I only get A"

¥ Common Problem Two Solutions

e cooE TR As 1. Evaluation to Prevent Regression

- Fast

- Readable m Change prompt - comprehensive testing

- Well-documented

- Secure = Ensure no breaking of other features

- Minimal dependencies = Data-driven, objective assessment
Model focuses on first 1-2, ignores rest 2. Structured Prompt Organization

X Don’t pile up rules:
= 101 rules, keep adding

Write like a book:

m Hierarchical structure
= Like new employee handbook

m Logical guidance with considerations

Key Takeaways

Summary: What We Learned

™ Technical | Strategic

1. Vibe Coding works for: 1. Giants have advantages:

m Startups, scripts, boilerplate = Compute, talent, ecosystem

= Not for: Research, core infra = But slow and generic-focused
2. Context Engineering is critical: 2. Startups should:

= Dynamic prompts = Go vertical

= Sub-agents = Master context engineering

= File system as bus = Avoid benchmark competition
3. Scaling Law debate: 3. Development is science:

m Engineers: still working = Evaluation systems

= Scientists: need new paradigms = Data flywheels

= Continuous iteration

Final Thoughts

The AI Revolution is Still Early

#. Find Your Wave “\ Master the Tools % Move Fast
Don’t compete where giants dominate. Find Context engineering and evaluation systems The field changes weekly. Iterate quickly,

niches they can’t reach. are your moat. learn constantly.

Thank You

Bojie Li
Cofounder & Chief Scientist, Pine Al

Based on conversations with OpenAl, Anthropic, Google DeepMind, and other top Al companies
at AWS re:Invent 2025 & NeurIPS 2025

Questions?

