
Silicon Valley AI Insights 2025

Bojie Li
Cofounder & Chief Scientist, Pine AI

Million-Dollar Salaries, Model Wars, and Survival Strategies for Startups

Based on conversations with OpenAI, Anthropic, Google DeepMind, and other top AI companies
at AWS re:Invent 2025 & NeurIPS 2025

What We’ll Cover
Technical Insights

Vibe Coding: Where AI shines and where it doesn’t

Context Engineering: Managing context rot

File Systems: As agent interaction buses

Scaling Law: Frontline vs. top scientists’ views

Industry & Strategy
Silicon Valley Giants: Google, OpenAI, xAI, Anthropic

Compensation Wars: Million-dollar salaries

Application Development: Scientific methodology

Startup Strategies: Survival in giants’ shadows

Part I: Vibe Coding

💻

Vibe Coding: Two Extremes

🚀 High Efficiency (3-5x)
Startup MVP development

One-off scripts

CRUD/boilerplate code

Data processing

🐌 Limited Effect
Research code

Core infrastructure

Complex refactoring

Big tech daily work

AI coding assistance shows polarized effectiveness

Clear requirements, standard tech stacks Deep understanding needed, high coordination costs

Scenario 1: Startup MVP (3-5x Efficiency)

🎯 Perfect Conditions

0 to 1 prototype development

Speed matters more than perfection

Finding PMF is the priority

Can ship daily/weekly for fast iteration

Simple tech stack

React, Django, FastAPI

Abundant training data

Lots of boilerplate

👥 Small Team Benefits
Low communication overhead

Fast decisions

Simple code review

No cross-department coordination

📝 Typical Tasks
CRUD business logic

Simple API development

Frontend forms/pages

Data processing scripts

Why it works:

Scenario 2: One-off Scripts (Universal 3-5x)

🔧 One-off Scripts
Data analysis scripts

Data migration scripts

Batch processing tools

Use-and-discard code

Low quality requirements

🔗 Glue Code (Boilerplate)
Configuration files

Data transformation layers

API call wrappers

Test case generation

Why it works:

Clear task boundaries

No deep business logic understanding needed

Limited impact if errors occur

Even top AI researchers use AI extensively for these

Works for everyone, including OpenAI & Google researchers

Scenario 3: Big Tech Daily Work (Limited Gain)

⏰ Time Distribution
30% Meetings

20% Coordination

20% Documentation

15% Debugging

15% Coding

AI only optimizes the last 15%

🏗️ System Complexity
Deep architecture understanding

Multi-team codebases

Backward compatibility

AI easily introduces regressions

📋 Strict Reviews
Multiple rounds of code review

Various lints and tests

Long deployment process

Even if AI writes fast, process time
remains

Why efficiency gains are modest:

Good for: Refactoring repetitive work, test case supplements, simple bug fixes, documentation

Scenario 4: Research Code (Almost Useless)

🧠 Intelligence-Intensive

Frontier research, not in training data

Requires deep theoretical background

Needs innovative thinking

AI doesn’t understand it either

🎨 Highly Customized
Every research project is unique

No similar examples to reference

Thinking time >> Coding time

The bottleneck is insight, not typing

💡 Key Insight:
When the hard part is figuring out what to write, not how to write it,
AI can’t help.

Why AI can’t help much:

Modifying attention mechanism

Adjusting training algorithms

Data ratio optimization

Might only change 3 lines,

but requires hours of thinking

Scenario 5: Core Infrastructure (Can Hurt)

⚠️ High Risk Areas
Database schema changes

Authentication/authorization systems

Core API contracts

Payment processing

Distributed systems coordination

🚨 Problems
Subtle bugs with serious consequences

Hard to test comprehensively

AI lacks system-wide context

Security vulnerabilities

Data corruption risks

✅ Better Approach
1. Design by senior engineers

2. Careful manual implementation

3. Extensive review

4. AI can help with: Documentation, Test cases, Boilerplate, etc.

Why to avoid AI for critical systems:

Best Practices from Silicon Valley

📏 PR Size Limits
< 500 lines per PR

Easier to review

Easier to revert

AI-generated code is easier to review in small chunks

🤖 Multi-Agent Workflows
Fully automated agent collaboration

Code generation → Review → Test → Fix

Minimal human intervention

🧪 Test-Driven Quality
Generate tests first

AI writes code to pass tests

Automated regression detection

Continuous validation

🏗️ Large Refactoring
Break into small, independent PRs

Each PR is self-contained

Merge frequently

Avoid long-lived branches

What top AI teams actually do:

Code Ownership Principle

"If AI wrote it, but you shipped it,
it’s YOUR code."

🎯 What This Means
You must understand every line

You’re responsible for bugs and issues

Don’t blindly trust AI output

Review AI code as carefully as junior developer code

AI is a tool, not a scapegoat

Part II: Scientific Application Development

🔬

Top AI Companies’ Methodology

📊 Evaluation System

Rubric-based evaluation for every
feature

🔄 Data Flywheel

Automated iteration and continuous
improvement

👥 Team Separation

Foundation model vs. application teams

Key insight: Treat AI development like science, not just engineering

Rubric-Based Evaluation

📋 What is a Rubric?

A detailed scoring framework that breaks down quality into measurable criteria

Core principle: Measure everything objectively

Example: Code Generation Quality Rubric

1. Correctness (0-40 points)

 - Compiles without errors (10)

 - Passes all test cases (20)

 - Handles edge cases (10)

2. Code Quality (0-30 points)

 - Follows style guide (10)

 - Proper error handling (10)

 - Good variable names (10)

3. Efficiency (0-30 points)

 - Time complexity (15)

 - Space complexity (15)

Evaluation System Components
🎯 Test Dataset Construction

Real user queries (anonymized)

Edge cases identified from failures

Adversarial examples to prevent over-fitting

Continuous updates as product evolves

🤖 Automated Grading
LLM-as-judge with rubrics

Deterministic checks (regex, exact match)

Unit test pass rates

Human eval for ambiguous cases

📈 Continuous Iteration

Yes No

Baseline Eval

Make Changes

Run Eval

Improved?

Ship It Analyze Failures

Monitor Production

Update Test Set

Foundation Model vs. Application Teams

🧠 Model Team Priorities

Top priorities:

1. Four major benchmarks:

Math

Coding

Computer Use

Deep Research

2. Long-term model capability:

Intelligence improvement

General capability enhancement

3. Vertical domain needs:

Very low priority

Basically not responded to

🎨 App Teams ≈ External Startups

Common limitations:

Use same base model API

Cannot influence model training direction

Cannot request targeted optimization

App team’s 2 advantages:

Can more easily get model team to review prompts, improve
context engineering

Token costs use internal pricing, much cheaper than external
API calls (e.g., Cursor API cost >> Claude Code subscription)

External startup advantages:

Can use multiple models (Google internal only Gemini)

Can do Mashup Agents: OpenAI + Anthropic + Gemini

More flexible tech choices

Model team priorities & app team limitations

Part III: Silicon Valley Giants

🏢

Google DeepMind: Strengths (1/2)
✅ 1. Leadership Commitment

Sergey Brin returned after ChatGPT launch

Demis Hassabis (DeepMind CEO): strong in both tech and
management

Can unite thousands of smart people

Avoids serious internal conflicts and politics

Contrast: Meta (Zuckerberg delegates AI), Microsoft/Apple (execs
have limited AI understanding)

Why Gemini App merged into DeepMind?

Building apps is essentially Research

Needs scientific methodology, extensive experiments, data-driven
approach

Needs comprehensive Evaluation system

Aligns with Research thinking mode

✅ 2. Compute Dominance

Hardware advantage:

TPU + GPU dual track

Self-developed TPU with continuous capacity

Years of Nvidia GPU procurement

Total compute possibly several times OpenAI’s

Model scale advantage:

OpenAI main models: GPT-4o series, hundreds of B params

Google: Gemini 2.5/3 Pro: Trillions of params (10x larger)

Gemini 3 Flash params ≈ GPT-4o

Why OpenAI doesn’t use bigger models?

Not enough compute for training & serving

Too many users (ChatGPT > 1B users)

Gemini ≈ 600M users, API calls ≈ 1/5 of OpenAI

Google DeepMind: Strengths (2/2)
✅ 3. Human Resources

Massive team scale:

Nano Banana Pro (Gemini image gen):

Algo team: < 10 people

Data + Infra team: ≈ 1000 people

OpenAI equivalent:

Algo: < 10 people

Data + Infra: order of magnitude less

Key advantage:

Can construct massive domain-specific training data

Example: Schematics, 9-grid images, etc.

Requires manual labeling and data construction

Today’s base models still highly dependent on human-constructed
data

✅ 4. Ecosystem Moat

Chrome browser:

Gemini button integrated in top-right

Better than ChatGPT Atlas, Perplexity Comet

Can directly ask about current page, summarize long articles

Workspace integration:

Google Calendar: Gemini can schedule

Google Drive: Gemini can read/write docs

Gmail: Gemini can handle emails

Natural user base

YouTube data:

Years of video data accumulation, multimodal training resource

Search engine:

Google Search shows AI Summary

Google DeepMind: 2 Weaknesses

🐌 Big Company Inefficiency
Multiple approval layers

Long launch cycles

Risk-averse culture

Internal politics

Coordination overhead

Example: A feature that takes startup 2 weeks might take Google
6 months

🎯 Only General Use Cases
Won’t do vertical/niche optimizations

Focus on broad applicability

"One size fits all" mentality

Doesn’t optimize for specific industries

Opportunity: Leaves room for vertical-specific startups

OpenAI: Anxiety & Resource Constraints
😰 Sources of Anxiety

1. Competition Intensifying

Google, Anthropic, xAI catching up

Open-source models improving

Lead is narrowing

2. Talent Structure Issues

Too many research scientists

Not enough engineers

"Academic culture" slowing down

Focus on papers vs. products

💰 Resource Constraints

The Dilemma:

Most users: > 1B users

Limited compute: Not as rich as Google

Must balance: Training vs. Serving

User experience compromises:

Early ChatGPT Plus ($20/mo): Violently truncated context

Context window only 32k tokens

Severe hallucinations: Lost previous context, later all nonsense

Author’s experience: Upload book for summary, first few pages OK,
rest hallucination

Model routing controversy:

GPT-5 auto-router: small problems → small model

Routing inaccurate: important problems → small model

Users can’t see which model is answering

Experience degraded, many complaints

xAI (Elon Musk): Extreme Execution

"No Research Engineers, only Engineers"

⚡ Philosophy
Results > Research

Ship fast, iterate fast

No academic baggage

Extreme accountability

Zero tolerance for underperformance

💪 Work Intensity
70+ hours/week for everyone

Weekend work expected

"All-in" mentality

Not for everyone

🎯 What This Means

Good:

Extremely fast execution

No bureaucracy

High iteration speed

Strong results-driven culture

Bad:

Burnout risk

High turnover

Less fundamental research

Work-life balance? What’s that?

Anthropic: Focus on Coding & Agents

🎯 Strategic Focus
Constitutional AI (core differentiator)

Code generation (challenging OpenAI)

Agentic systems (future bet)

Claude Code, Claude Computer Use

Context Engineering expertise

🧠 Technical Philosophy
Safety-first approach

Long context windows (200K)

Interpretability research

Scientific methodology

💡 Key Innovations

1. Context Engineering

Best practices for long contexts

Sub-agent architectures

Skills system

Progressive disclosure

2. Agentic Tools

Claude Code

Agent SDK

MCP protocol

3. Developer Focus

Excellent documentation

Strong developer relations

Clear best practices

The Talent War: Million-Dollar Salaries

💰 Salary Tiers (Annual USD)

Fresh Top PhD:

Total comp: $1.5M - $2M

Conditions: High research level

Mostly Options (but OpenAI is big enough to cash out)

Experienced AI Engineers:

Total comp: $4M - $5M

Conditions: Experience at top AI companies or notable academic work

Meta Super Intelligence Level:

Total comp: $10M+/year

Mostly Meta stock (can be cashed)

📊 AI vs Non-AI Gap

AI Engineers $1M+/year

Non-AI Engineers $250K - $300K/year (Google normal)

3-4x gap for same level

First wave: Meta’s Super Intelligence team started crazy hiring, lifted
entire market salary levels

AI compensation has reached unprecedented levels

Beyond Salaries: Marketing Wars

💸 Billboard Wars

San Francisco Airport highway:

Tens of kilometers of billboards

Hundreds of AI company ads

Traditional companies (Snowflake) also claiming AI

Funny example - Redis:

"My boss really wants you to know we’re an AI company"

Everyone rushing to align with AI

🔥 AI War vs. Group-Buying War

Group-Buying War (Internet Era):

Money spent on: Operations, sales, ads

Core: Grab market, merchants, users

Human wave tactics

AI War:

Money spent on: Top talent + GPUs

Core: Train models, compute power, talent

Elite tactics, best research team wins

Resource scale:

500-1000 GPUs per person

$1M+ salary per person

Massive spending on visibility

Resource Constraints at Foundation Model Companies

💰 Cost Structure

Per model training run:

$10M - $100M+ in compute

Months of preparation

Hundreds of GPUs/TPUs

Massive datasets

Large teams

Result: Can’t do small experiments

🎯 Must Prioritize

Will do:

General capability improvements

Things that serve millions

Benchmark improvements

Platform features

Won’t do:

Niche use cases

Vertical-specific optimization

Small market features

Custom training for < 100K users

Why they can only work on "big problems"

Part IV: Scaling Law Perspectives

📈

The Great Divide: Researchers vs. Scientists

🔬 Frontline Researchers

"Scaling Law is NOT dead"

Working on daily model improvements

See continuous gains from scaling

Optimistic about further progress

Engineering solutions working well

From: OpenAI, Anthropic, Google DeepMind employees

🧠 Top Scientists

"We need new paradigms"

Ilya Sutskever

Richard Sutton

Yann LeCun

Concerns:

RL Sampling Efficiency

Model Generalization

Continual Learning (ideal form still in research)

Frontline engineers see different reality than top scientists

Why the Divergence?

🎓 Problems Scientists Point Out

Important issues:

RL Sampling Efficiency problem

Model Generalization problem

These are real and important

🔧 Engineering Solutions

1. Sampling Efficiency → Use compute

RL sampling efficiency much worse than supervised learning

But with enough compute, brute force sampling works

This is why top companies buy tons of GPUs

🛠️ Generalization Solutions

Engineering methods:

Midtrain / SFT: Manually construct high-quality domain data for
continued training

Domain datasets: Collect and label data for specific scenarios

Sim Env: Build simulation environments for controlled learning

Rubrics-based Reward: Reward based on scoring rubrics, not simple
binary feedback

Not a silver bullet, but works in practice for many real-world
domains

Frontline consensus: Both Pretrain and Posttrain haven’t hit ceiling. Release every 6 months with clear capability jumps. Still lots of room for

Frontline researchers: Top scientists are relatively detached from engineering practice

Consensus: Test on Small Models First

🔬 Standard Workflow

Small models (1B-7B parameters) are cheap to iterate

Can run 100s of experiments for cost of 1 large run

Most improvements transfer to larger models

Failures fail fast and cheap

✅ If it works at small scale:

Very likely to scale up

Improvement may even amplify

Worth investing in large run

❌ If it doesn’t work at small scale:

Almost never works at large scale

Save millions in compute

Back to drawing board

Universal practice across all companies

1. Idea → 2. Small model test → 3. Verify improvement → 4. Scale up

Part V: Context Engineering

🔧

What is Context Engineering?

"The discipline of optimizing the utility of tokens against the inherent constraints of LLMs"

System Prompt

"Say less, mean more"

Minimal, precise instructions

Tools

"Every tool earns its place"

Self-contained, clear purpose

Data Retrieval

"Load what you need, when
you need it"

JIT Context

Long Horizon

Compaction, note-taking, sub-
agents

Data Retrieval: The Paradigm Shift

Lightweight Identifiers
Pass IDs, not full objects

Agent requests details if/when needed

Example: user_id: "12345" →
(agent calls get_user() if needed) →
Full profile

Progressive Disclosure
Start with summaries

Agent drills down as needed

Example: File list → File metadata →
File contents

Autonomous Exploration
Agentic Search: Give discovery tools,
not data dumps

Agent navigates information space

Example: search_docs() +
read_doc(detail_level) vs loading

all docs

💡 "Don’t send the entire library. Send a librarian."

Old: Pre-Loading (Traditional RAG) → New: Just-In-Time

Context Window & Context Rot

Context Window

All frontier models have a maximum number of total tokens able
to be processed in a single exchange

Anthropic’s context window: 200k tokens

Context Rot

As context grows, output quality regresses

Four types:

1. 🧪 Poisoning: Conflicting info corrupts reasoning

2. 📄 Distraction: Irrelevant info diverts attention

3. ❓ Confusion: Similar items become ambiguous

4. ⚠️ Clash: Instructions contradict each other

Research: All models see performance degradation over long contexts
(Chroma Technical Report: Context-Rot)

Three Strategies for Long-Horizon Tasks

Compaction
Periodically summarize intermediate
steps and/or compress history

Reset context with compressed
summary

Retain only essential information

Trade: Minor detail loss for continued
operation

Example: "User wants X, tried Y,
learned Z" vs. full conversation

Structured Memory/Note-
taking

Agents maintain explicit memory
artifacts (external persistent storage)

Store "working notes": decisions,
learnings, state in structured format

Retrieved on-demand rather than kept
in context

Example: Decision log, key findings
document

Sub-Agent Architectures
Decompose complex tasks into
specialized agents

Each sub-agent has focused, clean,
narrow context

Main agent orchestrates and
synthesizes results

Example: Code-review agent spawns
doc-checker sub-agent

Skills: Progressive Disclosure in Action

pdf/SKILL.md pdf/reference.md

PDF Processing Advanced Reference

This document contains advanced PDF processing features…

pdf/forms.md

If you need to fill out a PDF form, first check to see…

Discovery: Claude navigates and discovers added detail as needed
Executable Scripts: Token efficient for operations better
accomplished by traditional code

Skills are organized folders of instructions, scripts, and resources that Claude can discover and load dynamically

YAML Frontmatter

name: pdf

description: Comprehensive PDF toolkit for extracting text and

merging/splitting documents, and filling out forms.

Overview

This guide covers essential PDF processing operations using Py

and command-line tools. For advanced features, see `/reference

If you need to fill out a PDF form, read `/form.md` and follow

Tool Design Best Practices
Elements of Strong Tool Design

Use a simple & accurate tool name

Detailed and well-formed descriptions
Include what the tool returns, how it should be used, etc.

Avoid overly similar tool names or descriptions!

Tools that perform one action work better
Try to have at most 1 level of nested parameters

Provide examples - expected input/output format

Pay attention to the tool results’ format

Test your tools! Make sure agents use them well

{

 "name": "search_customers",

 "description": "Search customer database by

 name, email, or ID. Returns matching customer

 records.",

 "input_schema": {

 "type": "object",

 "properties": {

 "query": {

 "type": "string",

 "description": "Search term (name,

 email, or customer ID)"

 },

 "max_results": {

 "type": "integer",

 "default": 10,

 "description": "Number of results to

 return (default: 10, max: 50)"

 }

 },

 "required": ["query"]

 }

}

Effective Context Engineering Benefits

Handle context window limits

→

Reliability

Reduce context rot

→

Accuracy

Optimize for prompt caching

→

Cost & latency

File System as Agent Interaction Bus

❌ Tool Call Problems

Outputting large content unstable:

Tool call outputs hundreds of lines

If interrupted midway, all work lost

Cannot recover

Not iterable:

Output is output, cannot modify

Want to change one section? Regenerate all

Can’t do "draft-revise-finalize" flow

✅ Advantages of File System Abstraction

Broad "Coding":

Includes docs, reports, any structured content

Persistent:

Written to file, content saved

Even if agent crashes, file remains

Iterable:

Read file, modify part

Multiple revisions, gradually improve

Just like humans writing docs

Universal:

ls , read_file , write_file , edit_file , delete_file

All SOTA LLMs understand these operations

Anthropic’s core view: Coding Agent is the foundation of all general-purpose Agents

Part VI: Startup Strategies

🚀

What Startups Should AVOID

❌ Don’t Fight Head-On with Base Model
Companies

Startups should NOT touch: General Coding Agent, Deep
Research, Computer Use

Why startups will lose:

Can’t hire: People who truly understand model training are
extremely expensive. Startup raises millions to tens of
millions USD, hire a few people, money gone.

Not enough compute: Training a general model, even post-
training, needs hundreds to thousands of GPUs. Startups can’t
rent that many.

Not enough data: General capabilities need massive high-
quality data. Big tech has ecosystem advantages (YouTube,
Web Search). Startups can’t get this data.

❌ Don’t Casually Touch Model Training

1. People who truly understand models are too expensive

They’re all at big tech, won’t easily leave

Startups simply can’t poach them

Model training needs lots of trial and error – significant
cost

2. Open-source + finetuning dilemma

Open-source model quality 2 orders of magnitude worse
than closed-source

Finetuning hard to bridge this gap, unless extremely
niche vertical domain

When to consider training:

Only for specific scenario small models (8B/32B)

Domain is quite niche, general models insufficient

What Startups SHOULD Do

✅ Go Vertical + Master Context Engineering

Find your niche and build deep expertise:

Domain expertise + Customer access

Specialized data + Understanding of workflows

Context Engineering is HARD - requires serious expertise:

Expert-level domain-specific prompts

Specialized tools and sub-agent architectures

Domain-specific evaluations and iterations

✅ Build Domain Knowledge Base

Critical foundation:

Curate high-quality domain-specific data

Build proprietary knowledge graphs

Integrate industry best practices

🔄 Feedback loop for real business scenarios
Capture user interactions and corrections → Learn from production failures

Improve prompts based on real data → Refine knowledge base continuously

The flywheel: More users → More feedback → Better context engineering → Better performance → More users

Startup Talent Strategy

🎯 Why This Strategy Works

1. AI evolves too fast, weak compounding:

Best practices change every 3-6 months

Past experience depreciates quickly

2. New people reach frontier fast:

Smart + strong learning ability + willing to dig deep

6-12 months → above-average industry level

No PhD needed, no big-tech background needed

3. Massive cost advantage:

5-10x cost difference

💰 What You Can’t Match

You can’t compete on:

$1M - $10M salaries

Prestigious brands (OpenAI, DeepMind)

Massive compute budgets

Large teams

What You CAN Offer:

Ownership & significant equity

Real impact on product

Learning & growth

Close to customers

Mission & culture

Fast iteration, no bureaucracy

Core principle: Hire smart, strong learners WITHOUT AI background

Wait for Your Wave
🌊 Key: Stay Relevant

1. When there’s no wave, don’t give up:

Solidly build your foundation

Don’t think CV/NLP expertise is useless in LLM era

Don’t give up because you don’t see opportunities

2. Prepare your team:

Strong engineering capability

Strong learning ability

Strong cohesion

3. Stay Relevant:

First Principle Thinking

Closely track frontier products and research

⏰ Stay Ahead of the Curve

4. Predict trends:

Model and product trends

When wave comes, you’re ready

5. Catch your wave:

Can you quickly build and go to market?

When users grow, is your data flywheel ready?

ChatGPT, Gemini App, Cursor all have data flywheels

When your wave comes, are you prepared?

Part VII: Key Q&A Insights

💡

Q1: Finetune or Use Closed-Source Models?

📊 Three Key Gaps

1. Knowledge Density Gap:

Closed-source models lead by 2 generations

Higher quality training data

Better parameter efficiency

2. Reasoning Density Gap:

Open-source (Qwen, Kimi) needs very long CoT

Relies on longer thinking time for results

Closed-source CoT is more compact and efficient

3. Generalization Gap:

Open-source optimized for public benchmarks

Weak generalization on non-benchmark scenarios

✅ When to Use Open-source + Finetune

1. Extremely niche domain:

Almost no data on public internet

Must inject domain knowledge via finetuning

2. Data privacy requirements:

Cannot send data abroad

Must deploy locally

3. Extremely cost-sensitive:

Huge volume, API costs unsustainable

Self-hosting open-source is more economical

Conclusion: Closed-source + Context Engineering > Open-source + Finetune

Q2: Is Personalization a Real Problem?

🎯 Why It Matters

Recommendation Systems Evolution:

Traditional: Everyone reads same newspaper

ByteDance: Everyone sees different content

Insight: People live in different worlds with different values

Personalized products are more human-centric

AI’s Future:

Not just one "Universal Value"

Should adapt to each user’s values and preferences

Detailed value differences matter

🔧 Technical Challenges

1. Factual Information (Easy)

Birthday, address, card numbers, work info

Just remember, no ambiguity

We’re already good at this

2. User Preferences (Very Hard)

Context-dependent:

Academic format for papers ≠ travel guides

AI easily over-generalizes preferences

One-time vs. Long-term:

"I ordered Sichuan food yesterday"

≠ "User loves Sichuan food"

Maybe friend’s preference, or one-time thing

Yes, and it’s a core competitive advantage for the future

Q3: Edge-Cloud Agent Coordination?

⚠️ Core Challenge: APP State Sync

Login state problems:

User logged into WeChat on phone

Cloud agent also needs to login?

WeChat only allows one client → kick each other off

Fraud detection issues:

Cloud IP ≠ Phone IP, may be in different countries

Triggers fraud detection → account banned

Repeated login hassles:

Need to re-login to all apps in cloud

Poor user experience

Privacy concerns

✅ Solution: Mirror System

Douyin Phone’s approach:

"Shadow system" on local device

Agent operates apps in background

Apps think they’re in foreground

User operates real foreground

Two systems parallel, non-interfering

Ideal solution (needs OS support):

Android/iOS/HarmonyOS system-level

Sync APP state to cloud

Cloud agent operates cloud APP mirror

Sync back to phone when needed

Two Independent Dimensions: Agent location (edge/cloud) × Model location (edge/cloud)

Future: Inevitable, but core challenge is APP state sync

Q4: Best Practices for Using AI to Write Code?

🎯 Why?
You must review AI’s code

AI makes mistakes, humans find them

AI can find simple syntax errors

But complex architecture issues? AI struggles

👔 Role Transformation

From: Coder
To: Architect + Reviewer

🔄 New Workflow

1. Requirements breakdown (Human)

Break into small tasks (< 500 lines)

2. Coding (AI)

Can parallelize multiple AIs

3. Auto Testing (AI)

Run test suites

4. Code Review (AI)

5-6 different Review Agents

All pass → generate PR

5. Final Review (Human)

Approve or request changes

Core principle: Humans must understand more than AI

Q5: How to Ensure Workflow Stability When Model Updates?

🧪 Why Evaluation Matters

1. Models upgrade:

Base models update every few months

Each upgrade may break existing workflows

Need rapid compatibility validation

2. Prompts adjust:

Frequently need to optimize prompts

Change A, might break B

Need comprehensive regression testing

3. Avoid subjective judgment:

Can’t rely on manual testing a few examples

Time-consuming and not objective

Easy to miss problems

✅ Complete Evaluation System

1. Test Dataset:

Extract representative cases from production

2. Rubric-based Assessment:

Not just overall good/bad

Break into multiple sub-metrics

Score each independently

3. Automated Execution:

Switch model, run tests

Human review report

4. Continuous Optimization:

Find new issues, add to dataset

Form closed loop

Q6: How to Get AI Frontier Information?

🐦 Why X (Twitter)?
China’s "Top 3 AI Media" (新智元, 机器之心, 量子位) all get
news from X

First-hand papers and technical discussions

Many top researchers share there

How to Use X?
Follow technical leaders

Follow accounts that specifically share papers

📚 Other Sources

Academic:

arXiv daily digest

Top conferences (NeurIPS, ICML, ICLR)

Industry:

Company blogs (OpenAI, Anthropic, etc.)

Follow researchers on social media

Community:

AI Discord servers

Local meetups

Conferences

Most recommended: X (Twitter)

Q7: Multi-Goal Prompt Conflicts?

❌ Common Problem

Model focuses on first 1-2, ignores rest

✅ Two Solutions

1. Evaluation to Prevent Regression

Change prompt → comprehensive testing

Ensure no breaking of other features

Data-driven, objective assessment

2. Structured Prompt Organization

❌ Don’t pile up rules:

101 rules, keep adding

✅ Write like a book:

Hierarchical structure

Like new employee handbook

Logical guidance with considerations

"When I ask for A and B, I only get A"

Write code that is:

- Fast

- Readable

- Well-documented

- Secure

- Minimal dependencies

Key Takeaways

🎯

Summary: What We Learned
💻 Technical

1. Vibe Coding works for:

Startups, scripts, boilerplate

Not for: Research, core infra

2. Context Engineering is critical:

Dynamic prompts

Sub-agents

File system as bus

3. Scaling Law debate:

Engineers: still working

Scientists: need new paradigms

🏢 Strategic

1. Giants have advantages:

Compute, talent, ecosystem

But slow and generic-focused

2. Startups should:

Go vertical

Master context engineering

Avoid benchmark competition

3. Development is science:

Evaluation systems

Data flywheels

Continuous iteration

Final Thoughts

The AI Revolution is Still Early

🌊 Find Your Wave

Don’t compete where giants dominate. Find
niches they can’t reach.

🔧 Master the Tools

Context engineering and evaluation systems
are your moat.

🚀 Move Fast

The field changes weekly. Iterate quickly,
learn constantly.

Thank You

Bojie Li
Cofounder & Chief Scientist, Pine AI

Questions?

Based on conversations with OpenAI, Anthropic, Google DeepMind, and other top AI companies
at AWS re:Invent 2025 & NeurIPS 2025

