e Interaction with the Environment,
from Experience

nvited Talk : |

Bojie Li : 2 /

Chief Scientist, Pine Al \f l

tember 2025 g

The physics knowledge is almost complete. Two small "clouds” remain over the horizon.

- April 1900, Lord Kelvin

Outline

First Cloud: Real-time Interaction Second Cloud: Learning from Experience

Core Challenges Core Challenges
= High latency in voice interaction (tens of seconds) = Starting each task from scratch
= GUI operations are 3-5 times slower than humans = Inability to accumulate domain knowledge
= Serial bottleneck of the traditional ReAct loop = Lack of improvement in task proficiency
Technical Breakthroughs Three Paradigms for Agents to Learn from
= SEAL Architecture (Streaming, Event-driven Agent Loop) Experience

= Perception Layer: Streaming processing of voice signals 1. Post-training: RL parameter updates

» Thinking Layer: Interactive ReAct with asynchronous 2. In-context Learning: Attention soft-updates

Observation, Thinking, and Action 3. Externalized Learning:
= Execution Layer: VLA / TTS with a feedback loop » Knowledge Base: Persistent experience storage

« Tool Generation: Agent self-evolution

Two Clouds Over Agents: Real-time Interaction, Learning from
Experience

The first problem pointed out by OpenAl research scientist Shunyu Yao: Lack of real-person interaction during the agent’s task process

Shunyu Yao
IR Y 4 ,’ ? * ’

The Second Half

tldr: We're at Al’s halftime.

Inertia is natural, but here is the problem. Al has beat world champions at chess and Go, surpassed most humans on
SAT and bar exams, and reached gold medal level on 10l and IMO. But the world hasn’t changed much, at least judged
by economics and GDP.

| call this the utility problem, and deem it the most important problem for Al.

Perhaps we will solve the utility problem pretty soon, perhaps not. Either way, the root cause of this problem might be
deceptively simple: our evaluation setups are different from real-world setups in many basic ways. To name two
examples:

¢ Evaluation “should” run automatically, so typically an agent receives a task input, do things autonomously, then
receive a task reward. But in reality, an agent has to engage with a human throughout the task — you don't just text
customer service a super long message, wait for 10 minutes, then expect a detailed response to settle everything.
By questioning this setup, new benchmarks are invented to either engage real humans (e.g. Chatbot Arena) or user
simulation (e.g. tau-bench) in the loop.

Two Clouds Over Agents: Real-time Interaction, Learning from
Experience

The second problem pointed out by OpenAl research scientist Shunyu Yao: Lack of a mechanism to learn from experience

« Evaluation “should” run i.i.d. If you have a test set with 500 tasks, you run each task independently, average the
task metrics, and get an overall metric. But in reality, you solve tasks sequentially rather than in parallel. A Google
SWE solves google3 issues increasingly better as she gets more familiar with the repo, but a SWE agent solves
many issues in the same repo without gaining such familiarity. We obviously need long-term memory methods (and
there are), but academia does not have the proper benchmarks to justify the need, or even the proper courage to
question i.i.d. assumption that has been the foundation of machine learning.

Part One: Agent Real-time Interaction with the Environment

Interaction with:

= Humans: Conversation and collaboration through real-time voice.

The Internet: Operating computers, browsing websites, using software.

The Physical World: Controlling robots, interacting with the real environment.

Real-time Interaction Challenges for Voice Agents

Conflict: Serial Processing vs. Real-time Demand Dilemma of Fast and Slow Thinking

= Must wait: Must finish listening before thinking, and finish thinking = Deep thinking: High-quality reasoning, but CoT takes 10+ seconds

before speaking s User: "Help me book a flight"

= Blocking wait: Each step becomes a bottleneck = Agent: * (thinking for 10 seconds)...* User has already lost patience

= User finishes speaking (VAD) - Speech Recognition (ASR) - » Quick response: Latency <1 second, but prone to errors

Uomlsite SEmiEnes = Agreeing to an inappropriate plan without thinking

= Complete sentence - LLM with thought process > Complete output » Key issue: Unable to anticipate and think while listening

after thinking

= Complete output - Split into sentences - Text-to-Speech (TTS) -
Voice response

= Cumulative latency: Total latency far exceeds human tolerance

Technical Bottlenecks: Waiting at Every Step

Perception Stage Thinking Stage (5-20 seconds) Execution Stage

= Voice: High latency from waiting for the whole = Must receive the complete input before starting = Starts acting (speaking, operating
sentence to finish before transcribing; to think mouse/keyboard) only after thinking is complete
fragmented audio fed to the ASR model leads to « Cannot anticipate user intent = Each step in GUI operation requires a new
ey o mEL O AR = Test-time scaling makes latency even worse screenshot and thought process

= Vision: High prefill latency for 2K token
screenshots

Our Architecture: SEAL (Streaming, Event-driven Agent Loop)

Core Idea: Abstract all interactions as asynchronous event streams to achieve low-latency, interruptible real-time interaction

1. Perception Layer

Convert continuous real-world signals (voice,
GUI video) into a stream of discrete events.

Perception Layt

‘ User Voic H Streaming AS }>speech ever.

2. Thinking Layer

Process events asynchronously, enabling
thinking while listening and speaking while
thinking, generating an interleaved sequence
of thoughts and actions.

ui_change ever

3. Execution Layer

Convert discrete action commands back into
continuous real-world signals (TTS speech,
mouse movements).

Execution Lay¢

action_complete eve

Thinking Lay¢

think / assistant / action.

Interactive ReAct Lo

[~—High-level commar—]

,‘ Agent Speec

Low-level feedba

T
|

Visual Perceptic

VLA Executic

Operatiol

Layer 1: Perception Layer

Converting continuous real-world signals into discrete events

Input

Continuous signals: voice stream, GUI video stream

Output

Discrete events: speech_start , interrupt , laugh , speech_fragment , ui_change , etc.

Streaming Speech Perception Model: Replacing VAD + ASR

Problems with the traditional VAD + ASR cascaded architecture

Limitations of VAD + ASR

Latency accumulation: VAD detection latency + ASR processing
latency

Information loss: VAD only outputs a binary signal, losing acoustic
details

Error propagation: VAD models are small and often misjudge, leading
to ASR missing or mis-triggering recognition

Lack of context: ASR recognizes speech in segments, destroying
semantic continuity and leading to low speech recognition accuracy

Problems in practical scenarios

Interruptions are not intelligent enough: Any sound, even the other
person’s simple "uh-huh’, interrupts the AI’s speech, making the
interaction unnatural

Low accuracy in speech recognition due to lack of context: Error
rates are particularly high for contexts requiring information like email
addresses, brand names, personal names, and domain-specific terms
Loss of emotional information: Non-verbal information in speech
like sighs and laughter

Loss of background information: Inability to perceive whether the
environment is noisy or if there is background music

Streaming Speech Perception Model: Replacing VAD + ASR

Streaming Speech Perception Model based on
Open-Source Autoregressive LLM
= Unlike traditional ASR models like Whisper, it uses an autoregressive
architecture to reduce speech recognition latency
= Processes incoming speech tokens in a streaming manner
= Qutputs text and acoustic events in a streaming manner
= Post-trained on an open-source LLM
= Retains conversational context, supports in-context
learning, significantly improving recognition accuracy for
user’s personal information, domain-specific terms, etc.
= Possesses world knowledge and common sense,

significantly improving recognition rates for brand names,
amounts, etc.

Rich output information, including not only text
but also acoustic events

Text Tokens: Real-time transcribed text fragments

Special Tokens (Acoustic Events):

<speak_start> User starts speaking
<speak_end> User finishes speaking
<interrupt> Interruption intent detected
<emotion:happy> Emotion marker

<laugh> <sigh> Paralinguistic information

<music> Environmental sound information

The Myth of End-to-End Speech Models

Modality Conflict: Why "End-to-End" Can Be Worse?

Apparent Advantages vs. Actual Problems Manifestations of Modality Conflict

= In theory: End-to-end speech models should be better than ASR + = Parameter divergence: Some experts in MoE specialize in handling
LLM + TTS speech

= In practice: LLMs processing audio tokens directly often perform = IQ drop: Reasoning ability in speech tasks significantly decreases
poorly

= Training difficulty: Multimodal post-training can easily damage
= Root cause: Parameter divergence due to modality conflict original capabilities

Layer 2: Thinking Layer

Achieving interruptible, asynchronous think-while-listening and speak-while-thinking
based on an event-driven loop

Input

Stream of discrete events (from Event Queue)

Output

Interleaved thoughts and action commands (to Action Queue)

Core Innovation: Interactive ReAct

Core Idea: Breaking the rigid loop to achieve flexible interleaving of observation, thinking,

and action

Traditional ReAct: Rigid OTA Loop

Think
Must complet

4-{ Act H Observ }—»

Limitations:

Think
Must complet

Interactive ReAct: Flexibly Interleaved OTA

= Fixed loop: Must complete the entire OTA cycle

= Thinking easily interrupted: New input causes thought loss

= High response latency: Falls silent during deep thought

* O = Observation

e T = Thinking
e A =Action

sssss

Quick
Think

Advantages:

Continue
Thinking

—

New Observatiol
Insert immediate

—

Continut
Thinking

-

Think while listening: New observations can be inserted at any time

Speak while thinking: Respond immediately after quick thinking

Unified context: Maintains continuity of thought

SEAL Thinking Layer: Interruptible Interactive ReAct Loop

Key Insight: LLM thinking speed far exceeds voice 1/0, fully utilize the "gap time"

& LLM Processing Speed @ Voice I/0 Speed
= Input processing: 500+ tokens/second = Voice input/output: Only 5 tokens/second
= Thinking/Output: 100+ tokens/second = Speed difference: 20-100 times

In the "gap time" outside of observation (voice input) and action (voice output), we have ample time for deep thinking! The rigid observe-think-act loop just
doesn't fully utilize this gap time!

Fast Thinking - W Slow Thinking - @ Continuous Thinking

1. Quick Response (0.5s): 50 tokens of quick thinking - Immediate preliminary response (within 5s)
2. In-depth Analysis (after 5s): 500 tokens of slow thinking - Generate a more complete answer

3. Continuous Thinking (as needed): If 500 tokens are still not enough, continue thinking for 5 more seconds - Continue generating the answer until
thinking and speaking are complete. If multiple rounds of thinking are needed, the result is to continuously output a summary of the current round of
thought, like a person "thinking out loud".

Interactive ReAct: Think while Listening

Gracefully handling interruptions in conversation

Traditional ReAct: As soon as the user interrupts, all previous thoughts are discarded, and it has to start over.

Interactive ReAct: Retains the interrupted thought process, appends the new user input, and lets the model continue thinking from
where it left off.

<user>I want to change my plan from the current $109 to your new... </user>

<think>The user wants to change their plan, currently on the $109 plan.

Let me check the information on the new plan...

Need to know: 1) User's current plan details 2) New plan price...<interrupted/></think>
<user>(interrupts) By the way, is the new plan the one that's $79 a month?</user>
<think>(Continues previous thought) The user confirmed the new plan price is $79.

This will save $30 per month, going from $109 to $79.

I still need to confirm: 1) Differences in plan content 2) Any contract restrictions...</think>
<assistant>Yes, the $79 plan. Let me confirm, your current $109 plan includes...</assistant>

Advantage: The thought process is coherent and can quickly adjust strategy based on the latest information.

Interactive ReAct: Speak while Thinking

Using "filler words" to buy time for deep thought and reduce first-word latency

Scenario: A user asks a complex question, and the agent needs time to think.

Traditional ReAct:

<user>Do you confirm ordering this plan?</user>
* (a long silence of up to 10 seconds...) *
<assistant>After consideration, I confirm the order.</assistant>

Interactive ReAct:

<user>Do you confirm ordering this plan?</user>

<think> (quick thought, <@0.5s) </think>

<assistant>Let me just confirm, this is the $79 a month plan, right?</assistant> (preliminary response)
<think> (in-depth thought) </think>

<assistant>Yes, this plan is a great deal. I confirm the order!</assistant> (final answer)

Advantage: Greatly improves the fluency of the interaction, avoiding awkward long waits.

Interactive ReAct: Detailed Sequence Example

A complete conversational sequence of deep thinking

<user>Do you confirm ordering this plan?</user>

<think>This is a serious question, I need to use a filler phrase first, then think deeply.</think>
<assistant>Let me just confirm, this is the $79 a month plan, right?</assistant>

<think>Let me think deeply. The user's original plan was $109, now it's down to $79.

The user's Wi-Fi speed is reduced from 800 Mbps to 400 Mbps,

but the user said they are okay with the speed reduction.<interrupted></think>

<user>Yes, $79 a month.</user>

<think>The customer service representative confirmed this information, but I need more time to think,
so I need another filler phrase.</think>

<assistant>Let me think...</assistant>

<think>Continuing to think, the plan offered by the customer service includes... it looks pretty good overall,
but to be safe, I need to confirm the plan information again.</think>

<assistant>This plan looks good, but I'd like to confirm again, besides the Wi-Fi speed,

do all other services remain unchanged?</assistant>

<user>Yes, all other services remain unchanged.</user>

<think>Looks good, I should proceed with the booking.</think>

<assistant>Great, I'll book it now!</assistant>

Interactive ReAct: Interruption Handling Example

Interruption and resumption in real-time conversation

<user>This is Alaska Airlines, how can I help you?</user>

<think>Finally past the IVR and connected to a real person. I need to briefly describe the user's needs.</think>
<assistant>I'd like to book a flight from San Francisco to Seattle, for the price of<interrupted></assistant>
<user>What date are you planning to depart?</user>

<think>The customer service interrupted me. I need to state the user's departure date.

I found in the context that it's September 1st.</think>

<assistant>Departing on September 1lst, one way.</assistant>

<user>Let me check that for you, please hold.</user>

<think>I need to wait for the operation to complete.</think>

<assistant><wait></assistant>

<user>[SYSTEM HINT] There has been no voice from the other party for 10 seconds.</user>

<think>The customer service is checking for flights, I can ask for an update.</think>

<assistant>Have you found anything?</assistant>

<user>I've found 10 flights so far. What time would you like to depart?</user>

<think>This is a simple question. The user wants the cheapest option, and if the prices are similar, a morning departure.</think>
<assistant>I'm looking for the cheapest price<interrupted></assistant>

<user>Economy or business class?</user>

<think>The customer service interrupted me. I need to describe my price preference.</think>

<assistant>Economy class, as cheap as possible. If prices are similar, I'd prefer a morning departure.</assistant>

Note: Only the most recent turns of thought are kept to save context. For older turns, only <user> and <assistant> are retained.

Training an Adaptive Thinking Model for Interactive ReAct

Training Method Optimization Goals

Label Design: Core Capabilities:

= Multi-turn alternating <think> and <assistant> tags = Quickly determine if deep thinking is needed
= Support for interruption and continuation of thought = Natural filler words and time management

= Avoid hallucinations on simple questions
Data Source:

= Use Claude 4 Sonnet to generate training data R G L

= Avoid using OpenAl/Gemini models (thought processes are summarized) = First-word latency < 500ms
= No degradation in thought quality

Data Quality Control: L . . .
= = Significant improvement in user experience

= Diverse thinking scenarios
= Balance of simple and complex questions

= Include interruption and resumption cases

Interactive ReAct: Data Engineering Essentials

Thought Length Control Interruption Handling Capability

1. First-turn thought: Strictly control within 50 tokens (~0.5 seconds)

2. Simple question optimization: Minimize thought time, complete in a
single turn .

1. Thought interruption recovery:
Utilize existing thought content
3. Thought length as part of the RL reward function = Quickly generate an appropriate response

= Continue the unfinished reasoning

Scenario-based Handling 2. Speech interruption handling:

= Simple greetings: Respond directly without deep thought]

= Complex decisions: Generate appropriate filler words + deep thought]
= Multi-turn dialogue: Maintain context coherence]

Record the point of interruption
Understand the other party’s interjection

Naturally connect to the subsequent conversation

Layer 3: Execution Layer

Converting discrete action commands into continuous real-world signals

Input

Discrete action commands: speak(...) , click(...)

Output

Continuous signals (voice waveform, mouse trajectory)

The "Last Mile" Problem in Computer Use Agents

Moravec’s Paradox in Agents

The model "knows" what to do

Powerful world knowledge: Multimodal models can accurately
understand screen content and clearly describe the operational
goal.

Example: "Click that blue 'Submit’ button."

The model "can’t do" it

Clumsy actions: Difficult to accurately output click coordinates
or perform precise actions.

Action Space conflict: Pre-training data is mostly text, lacking
data to map high-level instructions to precise physical
coordinates.

Why the Inaccuracy?

Difficulty in outputting coordinates

Unfriendly to LLMs: Requiring an LLM to directly output (x,
y) coordinates is like asking a human to state the precise
coordinates of a point on the screen out of thin air—very difficult
and unnatural.

Limitations of "Bounding Box" Assistance

Method: Number all clickable elements on the page and have the
LLM output the number.

Problem: For complex interfaces, there can be hundreds of boxes
(e.g., Gmail interface, where every email and category is a
clickable area), making the screen cluttered and unusable. Some
software cannot even have bounding boxes drawn (e.g.,
document editors, spreadsheet editors, drawing software, video
editing software).

Solution: Train an End-to-End VLA Model

Core Idea: Borrow VLA models from the robotics field and post-train the model through RL to directly output actions.

Option 1: Main model directly outputs mouse click

coordinates

= Task: Given a screenshot and the full agent context, the LLM directly
outputs click coordinates, such as click(x,y) .

= Training: Use the LLM’s coding ability to generate a massive number
of test pages for RL.

= Pros: A single model completes the click action end-to-end, with lower
operational latency.

= Cons: No mouse movement trajectory, similar to web crawlers, easily
identified as a bot; model is sensitive to screen resolution; requires RL
training of a larger main model, which is costly.

Option 2: Train a separate VLA model to imitate
human mouse movement patterns

= Imitate human operation: Adopt a "'move-finetune-click" closed-loop
feedback model.

= Architecture: The action output by the main model describes the
desired click location or operation in natural language. The VLA model
generates the specific mouse movement or click action and quickly
adjusts the next action based on the relative position of the mouse
pointer and the element.

= Requirement: A low-latency (~100ms) VLA model that can quickly
adjust the mouse pointer position based on natural language
instructions like "click the product in the third row, second column" or
"click the search button" until the operation is complete.

= Pros: Can pass most CAPTCHAs based on mouse trajectory detection;
not sensitive to screen resolution; the VLA model only needs to
perform grounding tasks, can be smaller, and training cost is lower.

= Cons: The main model needs to output intermediate natural language
expressions, which are then handled by the smaller VLA model, leading
to higher latency; intermediate expressions can be ambiguous,
potentially reducing operational accuracy.

How Text-to-Speech Passes the Turing Test

Core Insight: Human "imperfection” stems from the limits of thinking speed

“ Natural Patterns of Human Speech
= Thinking speed < Speaking speed

@ The "Too Perfect” Problem of Al
= Thinking speed >> Speaking speed

When unsure what to say next - naturally produces: =

Always generates clean, complete sentences > leading to:
= Pauses (thinking time)

= Overly fluent (no pauses)

= Filler words ("um," "uh," "like") = Zero filler words

= Repetitions ("this, this...") = Immediately reveals it’s a machine

Solution: Main LLM generates cognitive pauses, then TTS generates speech

Main LLM N = Main LLM: Decides where to pause
Generates text + control — Textwithtag | ——» A ——» Natural speec
« Language+Action—Auc
tokens

= Sentence transitions: insert [THINKING]
= Searching for words: insert [SEARCHING]
= When uncertain: insert [UNCERTAIN]
= TTS Model: Multimodal generator
= Input: Text + control actions

= Qutput: Corresponding audio

Main LLM Generates Control Tags - TTS Renders

Architectural Division of Labor: LLM Decides, TTS Executes

Control Tags Generated by Main LLM

LLM inserts cognitive pauses based on context
[THINKING] "Um. .. Let me think
[SEARCHING] "That... How should I put it

LLM decides emotion and speech rate
[EMO:happy] "Great!
[SPEED:0.8x7] "Let me explain slowly

LLM chooses speaking style
[STYLE:casual] "Hey, what's up
[STYLE:formal] "Hello, how may I help you

LLM outputs special sounds
[BREATH]

[SIGH]

[CLEAR_THROAT]

[LAUGH:small]

Actual Generation Process

1. Main LLM Output (simulating cognitive load)
[STYLE:casual] [THINKING]

"I think, you know," [SEARCHING] "this"
"plan is pretty good" [CLEAR_THROAT] "What do you think?"

2. TTS Model Processing

Input: Language (text) + Action (control tags)
= Processing: Multimodal generation (Language + Action - Audio)

= Qutput: Natural speech

SEAL Architecture Summary: Agents with Real-time Environmental
Interaction

A unified event-driven loop that decouples perception, thinking, and execution to achieve true real-time and parallel processing.

Perception Layer Thinking Layer Execution Layer
Input: Continuous signals (voice, GUI) Input: Discrete event stream Input: Discrete action commands
Output: Discrete event stream Output: Interleaved thought/action Output: Continuous signals + feedback events
Solves: Latency, unnatural interruptions, and commands Solves: The "last mile" problem of clumsy
acoustic information loss in traditional voice Solves: The serial bottleneck of traditional agent actions and lack of feedback, forming a
perception. ReAct, enabling interruptible, asynchronous closed action loop.

think-while-listening and speak-while-

thinking.

Future Outlook: End-to-End Model

Three Levels of Al Agent Interaction with the World

From Voice to Vision to the Physical World

@: Real-time Voice Calls ™ Graphical User Interface
Input Modality: Voice Operations
Output Modality: Voice » Input Modality: Vision

Data Density: 15-50 tokens/second .
Latency Requirement: <500ms

Main Challenge: Balancing fast and slow]
thinking .

Output Modality: Mouse clicks, key
presses, etc. action sequences

Data Density: ~2K tokens/screenshot
Latency Requirement: <1 second

Main Challenge: Precise action execution

&« Physical World
Interaction

Input Modalities: Vision + Voice + Touch

Output Modalities: Voice + Joint action
sequences

Data Density: ~20K tokens/second
Latency Requirement: <100ms

Main Challenge: Real-time perception and
control

Technical challenges increase at each level, but solutions can be reused and transferred across levels.

Part Two: Agents Learning from Experience

Why Agents Need to Learn from Experience: From "Smart" to
"Proficient”

SOTA Model = Top Graduate

Knowledgeable: Possesses vast general knowledge.

Lacks Experience: May not perform as well as experienced
professionals on specialized tasks (e.g., accounting and tax filing).

Pine AI’s Business Challenges

Verifying Information: Pine Al helps users make phone calls. The first
time calling a customer service, it doesn’t know they need to verify the
last four digits of a credit card. The second time calling the same
company’s customer service, can it ask the user for the credit card
information beforehand?

Task Procedures: The first time processing a service cancellation, the
customer service on the phone said a form needs to be filled out. The
second time processing such a cancellation, can it directly fill out the
form instead of making a call?

Business Rules: What are the conditions for receiving a certain
discount? (e.g., veterans, loyal customers of over 2 years)

Price Estimation: Is $60 a month for 3 Gbps home broadband in a
certain area high or low? Is there room for negotiation?

Core Problem: Many business processes are dynamic and not publicly documented. Simply improving the general capabilities of the base
model cannot solve these "experience-based" problems.

Learning from Experience: A Fundamental Problem in Machine
Learning

The Essence of Machine Learning is to Learn from Experience

Paradigm 1: Post-training Paradigm 2: In-context Paradigm 3: Externalized
via SFT/RL Learning Learning
Method: Parameter Update (Post-training) Method: In-context Learning Method: Externalizing Knowledge and
Processes
» Update weights via gradient descent « Implicit learning through the attention
mechanism » Knowledge Base: Efficient, reliable, and
* Requires a large amount of labeled data hallucination-free external knowledge
» Utilizes long context as temporary memory
» Model is fixed after training » Tool Generation: Codifying processes to
» Learning effect is limited to the current achieve self-evolution
* Learning process is slow and expensive session, not permanent

» Transcending the limitations of
parameterized knowledge

Core Insight: From "optimizing model parameters” to "knowledge representation beyond parameters”

Method 1: Post-training - RL Makes Agents "Proficient”

Core Insight: RL struggles to improve IQ but can solidify experience

Limitations of RL X

Cannot improve IQ: Reasoning ability is capped by the base model

Cannot create knowledge: Can only optimize the application of existing
knowledge

Depends on base model capabilities: Cannot compensate for
fundamental flaws

The True Value of RL

Instruction following: Internalize hundreds of complex rules (industry
know-how)

Success rate improvement: Turns processes into "muscle memory,"

improving success rates and converting passgk to pass@l

Latency reduction: Internalizing rules from prompts into the model can
shorten the chain of thought, reducing response latency in real-time
interactions

Practical Path Based on SFT/RL

Basic Rule Following

Constitutional Al

Following complex rules through RLHF

Tool-use Training

Model as Agent

The key is to build a simulation environment and reward function

For example, many agent operations depend on interaction with the
external world (live phone calls, web operations, robotics). Some of these
experiments are costly, so high-quality simulation environments are
needed, or training in low-cost real interaction scenarios and then
transferring the capabilities to high-cost scenarios.

Feasibility Verification of Low-Cost RL Solutions

arxiv:2504.11536

Core Challenges

Data scarcity: High-quality tool-use trajectories are difficult to obtain

Evaluation difficulty: The correctness of tool use is hard to judge
automatically

Training cost: Traditional RL requires significant computational resources

Solutions

1. Automatic Trajectory Generation:

= Use LLMs to generate tool-use sequences

= Execute and verify for correctness

2. Simplified Reward Design:

= Binary reward (success/failure)

= Reduce the need for manual labeling

Experimental Results

Training Efficiency:

= Effective with just a few thousand trajectories

= Suitable for academic research and small-scale applications
Performance Improvement:

= Tool-use accuracy: +15-20%
= Task completion rate: +25-30%

= Significantly enhanced error recovery ability

Implications:

= RL training for tool use does not necessarily require massive resources

= Well-designed small-scale data can also bring significant improvements

https://arxiv.org/abs/2504.11536

Kimi K2 - Model as Agent

Large-scale Agent Data Synthesis and Joint RL Training

Based on the Kimi K2 Technical Report

Agent Data Synthesis Pipeline

= Scale generation: Systematically construct tools, agents, tasks, and
trajectories

= Environmental diversity: Combine real and simulated environments

= Verification mechanism: Ensure the correctness and high fidelity of
trajectories

Technical Innovations:

1. MuonClip Optimizer: 15.5T tokens of zero-loss peak training
2. 32B active parameters: 1T total parameter MoE architecture

3. Token efficiency: Maximize the learning signal from each token

RLVR (RL with Verifiable Rewards)

= Verifiable task rewards
= Self-Critique Rubric

= Extend from static alignment to open domains

Model as Agent Concept: The first open-source model to truly
implement "Model as Agent"

Model as Product Concept: The simulation environment
required during RL training is already an agent product. Therefore,
once the model training is complete, the agent can be directly
released as a product.

https://arxiv.org/abs/2507.20534

Kimi K2 Critic Rubrics: An Evaluation Framework for General RL

A Systematic Approach from Rules to Self-Critique

Core Rubrics Prescriptive Rules and Limitations

1. Clarity and Relevance Prohibitive Rules (Prescriptive):
= Respond to user intent concisely and sufficiently = Do not start with praise
= Eliminate unnecessary details = Avoid explicit self-justification
= Use efficient formatting = Reduce unnecessary qualifiers

2. Conversational Fluency and Engagement Known Limitations:
= Maintain a natural and smooth conversation = May be overly confident, lacking caution in ambiguous scenarios, and
= Provide relevant observations and insights preferring a single, clear answer

= Adapt tone to different contexts I ti
nnovations:

3. Objective and Grounded Interaction = Systematize human preferences into evaluable rules

= Avoid meta-comments, focus on the task itself, and maintain a neutral, = Internalize these rules through RL rather than relying on prompts

professional tone = Achieved a closed loop of evaluation and training

Method 2: In-context Learning - Using Conversation History as Built-in
Memory

The Transformer’s Attention Mechanism: An Efficient "Information Query"

The core of the Transformer is the Self-Attention mechanism, which can be understood as a key-value database based on similarity
matching.

Query (Q) Key (K) Value (V)

The "query need" of the current token The "content index" of historical tokens The "actual content" of historical tokens

Calculation Process: Use the current Q to compute similarity with all historical Ks. The resulting weights are used to perform a weighted
sum of the corresponding Vs.

Note: Unlike a vector database where K and V are combined (the content to be searched), and the query vector Q has the same
distribution as the content (both are text embeddings), in a Transformer, the distributions of Q, K, and V are all different.

Two Bottlenecks of Long Context: Memory Wall vs. Compute Wall

Two Fundamental Directions for Long Context Optimization

“ Memory Wall

Problem: Excessive KV Cache usage

Traditional approach: batch x seq_len x d_model

128K context requires 56GB of KV Cache

Limits batch size and maximum sequence length

Optimization Solutions:

MLA (DeepSeek-V2): Low-rank compression
= 16X compression ratio

= 128K requires only 3.5GB

GOQA: Shared KV heads

MOQA: Single-head KV

Compute Wall

Problem: O(n?) attention complexity

Traditional approach: Interaction between all token pairs
100K sequence = 10 billion computations

Extremely slow for both training and inference

Optimization Solutions:

NSA (DeepSeek-V3): Sparse attention

= Computes only important token pairs

= Hardware optimization for acceleration
Linear Attention: O(n) complexity

Flash Attention: IO optimization

Memory Wall: DeepSeek MLA (Multi-head Latent Attention)

A Fundamental Method to Reduce KV Cache Memory Overhead

Core Innovation: DeepSeek-V2 compresses the KV Cache to 1/16 of its original size through MLA, significantly reducing memory usage

(arxiv:2405.04434).

Technical Principle

Low-rank Projection: Project KV vectors into a low-dimensional
latent space

u Original: d_head x n_heads
= Compressed: c_kv (typically 512)

Shared Representation: Multiple attention heads share the same low-
dimensional KV representation

Decoupled RoPE: Separate positional encoding from content
representation

= Content is passed through the low-rank space

= Positional information is processed independently

Practical Effects

= Memory Savings:
= KV Cache reduced by 93.75% (16x compression)
= 128K context requires only 3.5GB of KV Cache

Performance Preservation:

= Almost no performance loss on benchmark tests

= Long-text understanding ability is fully maintained
Inference Acceleration:

= Reduced memory bandwidth requirements

= Increased batch processing throughput

MLA is one of the core technologies enabling DeepSeek-V2 to efficiently handle long contexts

https://arxiv.org/abs/2405.04434

Compute Wall: Sparse Attention

Core Insight: Turning the KV Cache into a Vector Database

Traditional Full Attention Sparse Attention
scores Qe K.T top_k_indices vector_search(Q, K, k
attention softmax(scores sparse_scores Q @ K[top_k_indices|.T
output attention @ V sparse_attention softmax(sparse_scores

output sparse_attention @ V[top_k_indices
Problem: Must compute the full nxn matrix
Advantage: Computes only k<<n relevant items

Disadvantage: Traditional hash-based acceleration methods for
vector databases are not applicable because Q and K have different
distributions in space, and high-similarity matches are rare.
Therefore, finding the top K still requires scanning a large
proportion of K. If heuristics (e.g., attention sinks for the first few
tokens and recent tokens) are used for filtering, some high-
matching K’s may be missed.

Compute & Memory Wall: Linear Attention
Core Idea: Change the computation order to achieve linear complexity

How it Works Advantages

= Standard attention is calculated as softmax(Q * KAT) * V . . .
Extremely low computational cost, fast inference speed.
= Linear attention approximates softmax using a kernel function (\phi)

and changes the computation order to (\phi(Q) * (\phi(K)AT * Disadvantages

V)) , thus avoiding the construction of a huge n x n matrix. = Itisa "lossy compression," performing poorly on tasks requiring "needle-in-

a-haystack" precise retrieval.

= The needle-in-a-haystack capability is the foundation of In-Context
Learning, which in turn is the basis for instruction-following and long-chain
reasoning abilities, which are the foundation of tool-use capabilities. If the
needle-in-a-haystack ability is weak, instructions and data in a long context
cannot be fully utilized.

= For shorter contexts, with the same KV Cache size, Softmax Attention
performs better than Linear Attention.

Case Study: Google’s Infini-Attention

Efficient Transformer for Infinite Context

Core Innovation: Infini-Attention introduces compressive memory into the traditional attention mechanism, enabling infinite context

processing with bounded memory (arxiv:2404.07143).

Architectural Design

= Dual Attention Mechanism:

= Local Attention: Handles masked attention for the current
segment

* Long-term Memory: Compressive storage based on linear
attention

= Unified Computation: Reuses the same set of Q, K, V for both types of
attention calculations

= Memory Update: Old KV states are stored in the compressive memory
instead of being discarded

Experimental Results

Memory Efficiency: Achieves a 114x memory compression ratio
compared to standard attention

Scalability: A 1B model naturally extends to a 1M sequence length

SOTA Performance: An 8B model achieves new state-of-the-art
results on a 500K-length book summarization task

https://arxiv.org/abs/2404.07143

DeepSeek NSA: Native Sparse Attention

Hardware-aligned Hierarchical Sparsity Strategy

Core Innovation: NSA (Native Sparse Attention) combines algorithmic innovation with hardware optimization to achieve efficient long-
context modeling (arxiv:2502.11089).

Technical Architecture Performance
= Dynamic Hierarchical Sparsity: = Quality Preservation: Matches or exceeds full-attention models on
= Coarse-grained: Token compression to maintain global various benchmarks
awareness = Significant Acceleration:
* Fine-grained: Token selection to ensure local precision * Decoding acceleration at 64K sequence length
= Hardware Optimization: = Substantial improvements in both forward and backward
= Algorithm design balances arithmetic intensity passes
= Implementation optimized for modern GPU architectures . Pra;t;callty: Can be trained directly without adapting pre-trained
models

NSA is one of the key technologies enabling DeepSeek-V?3 to efficiently handle long contexts

https://arxiv.org/abs/2502.11089

MiniMax-01: Lightning Attention

A Practical Solution Combining Linear Attention + Softmax Attention

Core Innovation: MiniMax-01 achieves efficient processing of ultra-long contexts through Lightning Attention and a MoE architecture
(arxiv:2501.08313).

Lightning Attention Achievements

= Linear Attention Mechanism: Replaces traditional softmax attention for = Context Length:

linear complexity = Supports 1M tokens during training

= Hybrid Architecture Design: » Extrapolates to 4M tokens during inference

= Insert 1 Softmax Attention block after every 7 Lightning Attention
blocks

= A total of 80 layers to balance long- and short-range dependencies

= Model Open-Sourced

= The Softmax Attention layers ensure the "needle-in-a-haystack"
information retrieval capability, thereby guaranteeing model abilities
like instruction following and long-chain reasoning

= Technical Details:
= Based on Transnormer blocks (Qin et al., 2022a)
= Four-way parallel processing for Q, K, V, G

= Combination of SiLU and Sigmoid activation functions

https://arxiv.org/abs/2501.08313

Theoretical Insight: Learning without Training

Based on the paper "Learning without training: The implicit dynamics of in-context learning" (arxiv:2507.16003)

Core Finding: Transformer blocks can implicitly update MLP weights through context

Implicit Weight Update Mechanism The Nature of In-Context Learning

Traditional
Training

Key Insight: Feature In-Context Learning

= Stacking Self-Attention and MLP layers produces a special effect

) o i Weight Update Explicit (gradient) Implicit (attention)
= Contextual information is converted into a low-rank update to the MLP

i . Current sequence
weights Persistence Permanent . q
= Each attention head contributes a rank-1 update only
Computation Backpropagation Forward pass
MLP_effecti MLP_original + X k_1_updat Adaptation Slow (many epochs) Fast (single
_effective _origina rank_1_updates .
Speed inference)

= LLMs are effectively performing "soft training" during inference
Significance: Explains how LLMs can learn new patterns from * Explains why few-shot learning is so effective
prompts without training = Provides a theoretical basis for designing better prompts

https://arxiv.org/abs/2507.16003

ICL vs. Fine-tuning: Counterintuitive Findings on Implicit Pattern
Learning

Based on the paper "Deeper Insights Without Updates: The Power of In-Context Learning Over Fine-Tuning" (arxiv:2410.04691)

Core Finding: For tasks containing implicit patterns, ICL can capture and utilize these patterns better than Fine-tuning

& Experimental Design ul Key Experimental Results
Implicit Pattern Task Types: Method Accuracy Sample Efficiency
Improvement
= Mathematical Computation: Expression evaluation, Boolean o
functions ICL Significant Just a few examples
» Textual Reasoning: Relational reasoning (judging city connections) Fine- Limited Needs thousands of times
. imite
= Code Understanding: Output prediction tuning more samples

Implicit Pattern Example: Performance Comparison:

= ICL can quickly identify deep patterns
(6-1) + (6-6) * (-10+1+2+13) = 5 = Fine-tuning struggles to learn implicit patterns even with more data

= [CL performs more robustly on OOD (out-of-distribution) data

Model Scale Impact:

A-B-Z direct connection vs. A-B-C-D-...-¥-Z = Verified on models from 0.5B to 7B parameters

» The advantage of ICL is consistent across all model sizes

https://arxiv.org/pdf/2410.04691

Circuit Shift Theory: Why is ICL Better at Pattern Recognition?

Explaining the difference between ICL and Fine-tuning from an interpretability perspective

Circuit Shift Mechanism

What is a Circuit?

= A subgraph in the model responsible for a specific behavior
= Composed of specific attention heads and MLP layers

= Represents the model’s "thinking path" for solving a problem

Key Finding: ICL leads to a larger-scale circuit shift, meaning ICL more
thoroughly changes the model’s problem-solving method

Activation Patching Analysis:

= By manipulating the activation values of specific components
= Quantify the contribution of different components to the task
= Found that ICL activates different circuit patterns

Pattern Capturing Ability:

ICL: "Can quickly capture deep patterns and significantly improve accuracy”

Fine-tuning: "Even with thousands of times more training samples, the
improvement is very limited"

Mechanism Explanation:

ICL is not simple pattern matching but activates different computational
circuits in the model

Although fine-tuning updates parameters, the circuit shift is smaller for
implicit pattern tasks

This explains why ICL can achieve better results without parameter updates

Method 3: Externalized Learning

Transcending the Fundamental Limitations of Parameterized Knowledge

Separating knowledge and processes from model parameters to achieve reliable, efficient, and evolvable persistent learning.

3.1 Knowledge Base 3.2 Tool Generation

Solving the unreliability, inefficiency, and hallucination Solving the inefficiency and unreliability of parameterized
problems of parameterized knowledge learning

= Separate volatile, precise knowledge from model parameters = Solidify repetitive processes into reliable, efficient code

= Achieve efficient, reliable, and hallucination-free knowledge retrieval = Agents achieve self-evolution by creating tools

= Support rapid updates and expansion = From minimal pre-definition to maximum self-evolution

3.1 External Knowledge Base - Rapidly Accumulating Experience

Equip the agent with an external knowledge base to record and summarize task experiences for retrieval in similar scenarios.

Knowledge Representation
Summary

= Content: Store summary, conclusive information.

= Example: "To cancel service B from company A, you need to verify the
user’s identity by providing the order number, registered email, and the last
four digits of the credit card number."

Raw Details

= Content: Store raw details, such as the complete record of customer service
conversations.

= Use descriptive filenames and store in the file system.

Tree-based Summarization (Example: RAPTOR)

= Treat raw details as leaf nodes of a tree, perform clustering to generate
summaries, then cluster the summaries to generate nodes at a higher level
of the tree.

= For retrieval, you can use a vector database for similarity matching or index
it like a file system.

Agentic Autonomous Summarization

= The agent autonomously decides to use tools like write file ,
edit_file ,etc., to write summaries to the file system.

Knowledge Retrieval
Automatic Matching and Context Insertion

= Automatically match corresponding entries from the knowledge base based
on user ID or business type and insert them into the context.

Agentic Semantic Search

= The agent autonomously decides which keywords to use for searching. The
retrieval can use vector databases or methods like BM25 to match against
the knowledge base.

Agentic File System Reading

= The agent autonomously decides to use tools like read_file , find ,
grep , etc., to read content from the file system.

Contextual Retrieval: Improving RAG Retrieval Accuracy

Based on Anthropic’s Contextual Retrieval

Core Problem: Traditional RAG loses context when chunking documents, leading to decreased retrieval accuracy.

Contextual Embeddings & Contextual BM25

= Before embedding and creating a BM25 index, add specific explanatory

context to each chunk.

Example Transformation

original = The company's revenue grew by 3%

over the previous quarter.

contextual = This chunk is from an SEC filing
on ACME corp's Q2 2023; previous
quarter revenue was $314M.

The company's revenue grew by 3%. ..

Implementation

= Use Claude to automatically generate context for each chunk (50-100

tokens).

Results

Reduction in retrieval failure rate (top-20 chunks):

= Contextual Embeddings only: {35%
= Contextual Embeddings + BM25: 49%
=+ Reranking: L 67%

Key Advantages:

1. Preserves document context: Each chunk knows where it came from.
2. Improves exact matching: BM25 handles proper nouns, error codes, etc.

3. Enhances semantic understanding: Embeddings capture more accurate
meaning.

Best Practice Combination: Contextual Embeddings + Contextual BM25 +
Reranking + Top-20 chunks

https://www.anthropic.com/news/contextual-retrieval

Learning Method Comparison: External Knowledge Base vs. Built-in
Attention

External Knowledge Base (RAG)

Analogy: Guiding an LLM that doesn't support thinking to think
by using a "Think step by step" prompt.

Pros: No retraining required, plug-and-play. Can use additional
compute power for multi-faceted summarization, and the
summarization process can flexibly incorporate industry know-
how.

Cons: Effectiveness depends on the precision and recall of
retrieval. Often, semantically related content across multiple
fragments is difficult to extract. Additionally, RAG-extracted
fragments lack context, affecting understanding.

Built-in Attention (Long Context)

Analogy: A model that natively supports long context and built-
in thinking capabilities.

Pros: End-to-end optimization, higher potential for
effectiveness.

Cons: Currently costly. The summarization process is generally
determined by the model itself, making it difficult to incorporate
industry know-how or leverage additional compute power.

Fine-tuning vs. RAG: An Empirical Comparison of Knowledge Injection

Methods

Based on the paper "Fine-Tuning or Retrieval? Comparing Knowledge Injection in LLMs" (EMNLP 2024)

. Paper’s Core Insight: RAG is not only more effective but also avoids the knowledge forgetting and hallucination problems that fine-

tuning can cause.

The Paper’s Comparative Experiment

= Compared Unsupervised Fine-tuning with RAG

= Evaluated the handling of Existing Knowledge and New Knowledge
Key Findings
1. RAG performs better overall
= Qutperforms fine-tuning in handling both existing and new knowledge

= More reliable retrieval of factual information

2. Limitations of Fine-tuning

= LLMs have difficulty learning new factual information through
unsupervised fine-tuning

= Requires multiple variations of the same fact to learn effectively

3. Improvement Strategies

= Expose the model to multiple expressions of the same fact during
training

= Use a combination of methods rather than relying on a single one

Scenarios Where RAG Excels

= When accurate injection of factual knowledge is needed
= Handling new domains or new knowledge

= Avoiding contamination of model parameters

Challenges of Fine-tuning

= Unsupervised fine-tuning alone is not effective for injecting new facts

= Requires data augmentation: multiple expressions of the same knowledge

= May affect the model’s original capabilities

Recommended Strategy

= Prioritize RAG for knowledge injection
= If fine-tuning is necessary, ensure data diversity

= Consider hybrid solutions to leverage the strengths of both

https://aclanthology.org/2024.emnlp-main.15.pdf

Large-Scale Knowledge Summarization with LLMs

Turning compute power into a scalable knowledge base

Problems with Traditional Knowledge Base
Construction

= Fragmented knowledge: A vast amount of knowledge and industry
experience is not summarized

= Inefficient querying: Information is scattered across the internet

= High cost: The cost of summarizing industry knowledge is extremely
high

= Difficult to build knowledge bases: Building internal company
knowledge bases is challenging

Building Large-Scale Knowledge Bases with

LLMs

= General Knowledge =» Foundational Model

Model training itself is a knowledge summarization
process

Transformers are not good at memorizing a large number
of factual details, which would lead to an explosion in
parameter count

= Factual Information, Industry Experience =» LLM-automated
Summarization

Specific facts like personal information, industry data
Industry experience like verification information,
procedures, rules, price estimations

Organize massive amounts of raw data to form a
structured knowledge base

. Core Insight: LLMs can convert compute power into a scalable knowledge base

3.2 Tool Generation - Enabling Agent Self-Evolution

Core Idea: From Minimal Pre-definition to Maximum Self-Evolution (Alita: (arxiv:2505.20286))

Minimal Pre-definition Principle Maximum Self-Evolution Mechanism
= Minimalist Architecture: Equipped with only a single core e
auippedw Y & Core Capabilities:
component (Web proxy)
= Avoid Over-design: Do not pre-define complex tools and workflows 1. Autonomous Tool Creation: Generate new tools based on task
= Prioritize Generality: Reduce domain-specific hard-coding requirements
2. Capability Refinement: Iteratively improve the performance of
Results: GAIA benchmark existing tools
- Pass@1:75.15% 3. Experience Reuse: Solidify successful patterns into reusable
= Pass@3:87.27% components
= Qutperforms many complexly designed Agent systems Model Context Protocols (MCPs):

mcp agent.generate_protocol (task

result agent.execute_with_mcp(mcp

agent.store_successful _pattern(mcp

https://arxiv.org/abs/2505.20286

The Challenge of Scaling Tools: MCP-Zero Active Tool Discovery

Based on the paper MCP-Zero: Active Tool Discovery for Autonomous LLM Agents

The Problem of Exploding Tool Numbers
Scale Challenge: MCP ecosystem has 308 servers, 2,797 tools

Dilemma of Traditional Methods:

= Full Injection: GitHub MCP with 26 tools requires 4,600 tokens
= The complete toolset would require 248k tokens - Context explosion

= Static Retrieval: Selection based on the initial query, cannot anticipate
task evolution

= "Debugging a file" requires file system + code analysis + command
execution

Fundamental Problem: The agent becomes a passive selector, not an active
discoverer

MCP-Zero: From Passive to Active

Core Concept: Let the agent actively identify capability gaps and request tools
on demand

Three Mechanisms:
1. Active Tool Request: Agent generates a structured request

server: github

tool: search_repos

2. Hierarchical Semantic Routing: First filter by server, then match the tool

3. Iterative Capability Expansion: Dynamically discover and build toolchains
during execution

Measured Effects:

= APIBank test: 98% token savings
= Accurately selects from 3000 tools while maintaining high accuracy

= Stable performance as the tool ecosystem grows

https://arxiv.org/pdf/2506.01056

Agent Auto-generates Tool Case 1: Intelligent RPA for Computer Use

The Dilemma of Computer Use

Inspiration from Traditional RPA

Slow Speed: Every step requires interaction with the LLM, resulting in Fast Speed: Runs pre-written scripts, much faster than humans.
high latency.

Problem: Cannot handle dynamic interfaces, lacks understanding and

High Cost: Each operation is an expensive LLM call. judgment.

New Idea: Let the LLM automatically summarize the operation process into an "intelligent RPA" tool.

Intelligent RPA: Technical Implementation Details

Core Challenges of Generating RPA Code from Operation Sequences
Three Major Technical Hurdles Solutions

1. Coordinate Drift Problem 1. Intelligent Element Localization
= Page element positions change dynamically = Use element ID/XPath instead of coordinates

= (Clicking fixed coordinates often fails = Playwright automatically adapts to interface changes

2. Dynamic Content Judgment 2. LLM Analysis and Optimization

= Some steps require understanding the content = Distinguish between fixed processes and dynamic judgments

= Example: Selecting the cheapest flight ticket = Extract automatable operation sequences

3. Uncertain Response Time 3. Event-driven Execution

= Web page loading times are not fixed = Listen for browser event completion states

= Cannot handle exceptions = Intelligently wait for elements to be clickable

= Automatically switch to LLM takeover on timeout

The Effect of Intelligent RPA

Use Case 1: Checking the Weather (9 Use Case 2: Booking a Flight on the
steps)

Official Website (240 steps)

Traditional Method: 47 seconds, 9 LLM calls

Traditional Method: 19 minutes, 240 LLM calls
= After Acceleration: 10 seconds, 2 LLM calls + 1 RPA

After Acceleration: 4 minutes, 25 LLM calls + 4 RPAs

Core Advantage: Zero manual development cost, fully automatic generation, and can automatically generate new tools to adapt to
website changes.

Agent Auto-generates Tool Case 2: Agent Log Parsing and
Visualization

Challenge: Agent Execution Flow Logs

Requirement: Visualize the agent’s execution flow (trajectory) for
observation and debugging.

Format Diversity: The agent’s tools and sub-agents are diverse, each
with different parameter formats and tool return result formats, which
are constantly changing.

Large Log Volume: The entire agent execution process often has
hundreds of steps, requiring compressed display for better intuition.
But it must also be possible to expand the full details of each LLM call
and each tool call for debugging.

High Maintenance Cost: Manually written parsing code needs
constant updates and it’s difficult to predict all possible log formats.

Agent’s Self-Evolving Solution

Core Mechanism: Frontend automatically reports parsing failures
to the Agent.

1.
2.

Intelligent Recognition: Agent analyzes the pattern of the failed log.

Automatic Parsing Code Generation: Generates new frontend
parsing code based on the sample.

. Automatic Testing of Parsing Code: Uses a virtual browser execution

environment to check if the new parsing code can correctly parse the
new log type (any errors), and uses a Vision LLM to check if the
visualization effect meets expectations.

. Hot-Update Deployment: The parsing code is automatically updated.

Agent Auto-generates Tool Case 3: Automatic Diagnosis of Production
System Issues

Challenges in Production System Debugging Agent’s Automated Diagnosis Flow
= Difficulty in Problem Localization: Finding the root cause from a massive . X
. Working Mechanism: Automatically triages issues from production
amount of agent execution flow logs.)) .
environment agent execution flow logs and generates issue reports and test

= High Reproduction Cost: Production issues are difficult to reproduce in a

] cases.
test environment.

= Fixed Issues Tend to Reappear: High cost of building regression test
cases.

1. Agent Execution Flow Log Analysis:

= Combines system architecture documents and PRDs (Product
Requirement Documents) to automatically analyze if the agent’s
execution flow meets expectations.

2. Test Case Generation:

= Automatically generates Regression Test Cases.

= Ensures that the issue does not reappear after being fixed.

3. Work Item Creation:

= Automatically creates a Scrum Work Item.

= Includes a problem description, scope of impact, and a suggested fix.

Summary: From Post-training to In-context Learning to Externalized

Learning

Paradigm 1: Post-training

Method: RL Parameter Update

= Pros: Solidifies experience into parameters, strong generality

= Cons: Slow to update, high cost, unreliable for facts

Paradigm 3: Externalized Learning

3.1 Knowledge Base

Pros: Solves hallucination problems, knowledge updates faster than post-
training, can leverage extra compute for in-depth summarization

Paradigm 2: In-context Learning

Method: Attention "Soft Update" during inference

= Pros: Fast adaptation, no training required

= Cons: Temporary, non-persistent, limited by context window

3.2 Tool Generation

Pros: Codifies processes through tool generation, achieving efficient and
reliable automation

Externalized Learning: Beyond the Limitations of Attention

Attention opened the door to in-context learning, but it is not the end of learning.

Evolution and Limitations of Learning Paradigms Why Externalized Learning is an Inevitable Trend

1. Parameterized Learning (Training) .
Fundamentally solves the three major problems of Transformers:
= Mechanism: Gradient Descent

= Pros: Internalized knowledge, strong generality = Hallucination and Unreliability: External knowledge bases provide a

e . . . verifiable, precise source of truth.
= Limitations: High cost, slow updates, facts easily confused P

. = Inefficient Learning and Retrieval: Targeted retrieval is far superior to
2. In-context Learning (Inference)

"finding a needle in a haystack" among billions of parameters.
= Mechanism: Attention "soft update”

= Clumsiness in Repetitive Tasks: Tool generation solidifies vague

= Pros: Fast adaptation, no training required experience” into precise, efficient code
, .

= Limitations: Session-level, non-persistent, dependent on context

window Paradigm Shift in Agent Design:
3. Externalized Learnin; . .
g = Past: Static, all-knowing models
= Mechanism: Structured read/write + code generation .
/ g = Present: Dynamic models dependent on context
= Pros: Persistent, reliable, efficient, hallucination-free
’ ’ = Future: Learning entities that interact efficiently with the external world

= Positioning: Combines the advantages of parameterized and in-context

learning

Core Idea: Let the model do what it does best (reasoning), and entrust knowledge and processes to
more reliable external systems.

Scaling Law: From Pre-training to RL

"We want Al agents that can discover like we can, not which contain what we have discovered. Building in our discoveries only makes it harder to see how the

discovering process can be done." — Rich Sutton, The Bitter Lesson

Phase 1: Pre-training based on predicting the next token Phase 2: Reinforcement Learning: Post-training through
= Core Law: The model’s performance predictably improves with increases in interaction with the world

computational resources, model parameters, and training data volume. = Agents allow the model to move beyond passive learning to actively
= Implementation: Unsupervised pre-training on massive amounts of exploring the world.

internet text to learn general world knowledge. = Interaction with:

= Essence: Internalizing knowledge into the model’s parameters, forming a

= Humans: Conversation and collaboration through real-time voice.
vast, static knowledge base.

= The Internet: Operating computers, browsing websites, using software.
= Achievement: Achieved general language understanding and reasoning

= The Physical World: Controlling robots, interacting with the real
capabilities.

environment.

= Learning Method: Through reinforcement learning, discovering and
learning from the successes and failures of interactions, which is the second
curve of the Scaling Law.

= Goal: To transform from a container of knowledge to an engine of discovery.

The Bottleneck of Scaling Law: The Precise Memory Limitation of Transformers

= The Transformer architecture is not good at precisely and reliably memorizing and updating these highly dynamic, specific details.

= Forcing memorization easily leads to hallucinations and information confusion, and is not cost-effective (requiring traversal of a large portion of all knowledge
during training and inference), becoming a huge obstacle for the Scaling Law.

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

The Future Path: Externalized Learning Continues the Scaling Law

|

"The two methods that seem to scale arbitrarily ... are search and learning." — Rich Sutton, The Bitter Lesson

Breaking the Bottleneck: Externalized Learning

The LLM itself provides powerful tools to solve the memory bottleneck—
summarization and code generation

Precise, Structured Knowledge Bases

SOTA LLMs can summarize unstructured experiences (like conversations,
documents) into structured knowledge

Before LLMs, this high-quality summarization required expensive domain
experts, so expert systems based on human-written rules could not scale;
but today, LLMs are like an infinite number of domain experts

In the NLP field, Summarization is the only traditional NLP topic that
remains active in the LLM era

Code as a Universal Knowledge Representation

LLMs can precisely describe any experience or knowledge as code

Code generation is not just a tool for programmers, but a universal,
structured data representation that is precise, verifiable, and composable

Co-evolution of LLMs with External Knowledge and
Tools

Model does what it does best: Leverage the powerful general reasoning
and understanding capabilities of LLMs

External systems do their job: Manage precise, dynamic knowledge and
processes with external knowledge bases and codebases

Co-evolution: The agent learns by interacting with external systems
(people, the internet, the physical world) and consolidates the learned
outcomes (compressed summaries of knowledge, tools) into the external
systems, forming a continuously strengthening closed loop

Continuing the Scaling Law

With more compute power, the agent can extract more detailed and precise
knowledge from its interactions with the world

Search: Corresponds to external knowledge bases and tool libraries
Learning: Corresponds to the LLM’s ability to summarize interaction
experiences into knowledge and code

"Externalized learning" breaks the limitation of the number of model
parameters, extending the boundary of the Scaling Law to the external
ecosystem of knowledge and tools

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

Pine Al

We are looking for full-stack engineers who can build SOTA autonomous Al agents.
Our philosophy:

Everyone's contribution to the company's valuation should be in the tens of
millions of dollars.

Requirements to Join Pine Al

@ 1. Proficient in Al-assisted programming

= 80%+ of code written through human-machine collaboration
= Coding interview: Complete feature development in 2 hours with Al
assistance

= All internal systems built based on Al

™ 7. Love solving problems hands-on

= "Talk is cheap, show me the code"
= Become a combination of an architect and a product manager

= Directly command the Al to reduce information loss

~_ 3.Solid software engineering skills

= Complete documentation and testing
= Make the code understandable and maintainable by Al

= High-quality engineering practices

& 4. Understand LLM principles

= Know the basic principles and capability boundaries
= The right way to harness LLMs

= Provide appropriate context and tools

% 5. Confidence to solve world-class problems

= Strive for SOTA level
= Grow with a startup
= Constantly surpass existing levels

@& Our Mission

To truly solve users’ troubles and get things done by building agents that can
interact with the world in real-time and learn from experience.

Pine AI - Building Agents That Get Things Done

mail —-s "Join Pine AI" -A /path/to/your_resume.pdf boj@l9pine.ai

Two Clouds Over Agents: Real-time Interaction and Learning from
Experience

"The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are ultimately the most effective, and by a large
margin."
— Rich Sutton, The Bitter Lesson

Powered by (] Slidev

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf
https://sli.dev/

