
Two Clouds Over Agents: Real-time Interaction with the Environment,
and Learning from Experience

Bojie Li

Co-Founder & Chief Scientist, Pine AI

September 2025

Press Space for next page

Invited Talk

The physics knowledge is almost complete. Two small "clouds" remain over the horizon.

- April 1900, Lord Kelvin

Outline

🌩️ First Cloud: Real-time Interaction
Core Challenges

High latency in voice interaction (tens of seconds)

GUI operations are 3-5 times slower than humans

Serial bottleneck of the traditional ReAct loop

Technical Breakthroughs
SEAL Architecture (Streaming, Event-driven Agent Loop)

Perception Layer: Streaming processing of voice signals

Thinking Layer: Interactive ReAct with asynchronous
Observation, Thinking, and Action

Execution Layer: VLA / TTS with a feedback loop

🌩️ Second Cloud: Learning from Experience
Core Challenges

Starting each task from scratch

Inability to accumulate domain knowledge

Lack of improvement in task proficiency

Three Paradigms for Agents to Learn from
Experience
1. Post-training: RL parameter updates

2. In-context Learning: Attention soft-updates

3. Externalized Learning:
• Knowledge Base: Persistent experience storage
• Tool Generation: Agent self-evolution

Two Clouds Over Agents: Real-time Interaction, Learning from
Experience
The first problem pointed out by OpenAI research scientist Shunyu Yao: Lack of real-person interaction during the agent’s task process

Two Clouds Over Agents: Real-time Interaction, Learning from
Experience
The second problem pointed out by OpenAI research scientist Shunyu Yao: Lack of a mechanism to learn from experience

Part One: Agent Real-time Interaction with the Environment

Interaction with:

Humans: Conversation and collaboration through real-time voice.

The Internet: Operating computers, browsing websites, using software.

The Physical World: Controlling robots, interacting with the real environment.

Real-time Interaction Challenges for Voice Agents

Conflict: Serial Processing vs. Real-time Demand
Must wait: Must finish listening before thinking, and finish thinking
before speaking

Blocking wait: Each step becomes a bottleneck

User finishes speaking (VAD) → Speech Recognition (ASR) →
Complete sentence

Complete sentence → LLM with thought process → Complete output
after thinking

Complete output → Split into sentences → Text-to-Speech (TTS) →
Voice response

Cumulative latency: Total latency far exceeds human tolerance

Dilemma of Fast and Slow Thinking
Deep thinking: High-quality reasoning, but CoT takes 10+ seconds

User: "Help me book a flight"

Agent: * (thinking for 10 seconds)…* User has already lost patience

Quick response: Latency <1 second, but prone to errors

Agreeing to an inappropriate plan without thinking

Key issue: Unable to anticipate and think while listening

Technical Bottlenecks: Waiting at Every Step

Perception Stage

Voice: High latency from waiting for the whole
sentence to finish before transcribing;
fragmented audio fed to the ASR model leads to
low recognition accuracy

Vision: High prefill latency for 2K token
screenshots

Thinking Stage (5-20 seconds)

Must receive the complete input before starting
to think

Cannot anticipate user intent

Test-time scaling makes latency even worse

Execution Stage

Starts acting (speaking, operating
mouse/keyboard) only after thinking is complete

Each step in GUI operation requires a new
screenshot and thought process

Our Architecture: SEAL (Streaming, Event-driven Agent Loop)

1. Perception Layer

Convert continuous real-world signals (voice,
GUI video) into a stream of discrete events.

2. Thinking Layer

Process events asynchronously, enabling
thinking while listening and speaking while
thinking, generating an interleaved sequence
of thoughts and actions.

3. Execution Layer

Convert discrete action commands back into
continuous real-world signals (TTS speech,
mouse movements).

Execution Laye

Thinking Laye

Perception Laye

speech even

think / assistant / action.

High-level comman
Operation

Low-level feedbac

ui_change even

action_complete eve

User Voice Streaming AS Event Queu

Interactive ReAct Loo

LLM

Action Queu

Screen GU

Visual Perceptio

VLA Executio

TTS Agent Speec

Core Idea: Abstract all interactions as asynchronous event streams to achieve low-latency, interruptible real-time interaction

Layer 1: Perception Layer

Converting continuous real-world signals into discrete events

Input

Continuous signals: voice stream, GUI video stream

Output

Discrete events: speech_start , interrupt , laugh , speech_fragment , ui_change , etc.

Streaming Speech Perception Model: Replacing VAD + ASR

Problems with the traditional VAD + ASR cascaded architecture

Limitations of VAD + ASR
Latency accumulation: VAD detection latency + ASR processing
latency

Information loss: VAD only outputs a binary signal, losing acoustic
details

Error propagation: VAD models are small and often misjudge, leading
to ASR missing or mis-triggering recognition

Lack of context: ASR recognizes speech in segments, destroying
semantic continuity and leading to low speech recognition accuracy

Problems in practical scenarios
Interruptions are not intelligent enough: Any sound, even the other
person’s simple "uh-huh", interrupts the AI’s speech, making the
interaction unnatural

Low accuracy in speech recognition due to lack of context: Error
rates are particularly high for contexts requiring information like email
addresses, brand names, personal names, and domain-specific terms

Loss of emotional information: Non-verbal information in speech
like sighs and laughter

Loss of background information: Inability to perceive whether the
environment is noisy or if there is background music

Streaming Speech Perception Model: Replacing VAD + ASR

Streaming Speech Perception Model based on
Open-Source Autoregressive LLM

Unlike traditional ASR models like Whisper, it uses an autoregressive
architecture to reduce speech recognition latency

Processes incoming speech tokens in a streaming manner

Outputs text and acoustic events in a streaming manner

Post-trained on an open-source LLM

Retains conversational context, supports in-context
learning, significantly improving recognition accuracy for
user’s personal information, domain-specific terms, etc.

Possesses world knowledge and common sense,
significantly improving recognition rates for brand names,
amounts, etc.

Rich output information, including not only text
but also acoustic events

Text Tokens: Real-time transcribed text fragments

Special Tokens (Acoustic Events):

<speak_start> User starts speaking

<speak_end> User finishes speaking

<interrupt> Interruption intent detected

<emotion:happy> Emotion marker

<laugh> <sigh> Paralinguistic information

<music> Environmental sound information

The Myth of End-to-End Speech Models

Modality Conflict: Why "End-to-End" Can Be Worse?

Apparent Advantages vs. Actual Problems
In theory: End-to-end speech models should be better than ASR +
LLM + TTS

In practice: LLMs processing audio tokens directly often perform
poorly

Root cause: Parameter divergence due to modality conflict

Manifestations of Modality Conflict
Parameter divergence: Some experts in MoE specialize in handling
speech

IQ drop: Reasoning ability in speech tasks significantly decreases

Training difficulty: Multimodal post-training can easily damage
original capabilities

Layer 2: Thinking Layer

Achieving interruptible, asynchronous think-while-listening and speak-while-thinking
based on an event-driven loop

Input

Stream of discrete events (from Event Queue)

Output

Interleaved thoughts and action commands (to Action Queue)

Core Innovation: Interactive ReAct

Core Idea: Breaking the rigid loop to achieve flexible interleaving of observation, thinking,
and action

Traditional ReAct: Rigid OTA Loop

Observe Think
Must complet

Act Observe Think
Must complet

Act ...

Limitations:

Fixed loop: Must complete the entire OTA cycle

Thinking easily interrupted: New input causes thought loss

High response latency: Falls silent during deep thought

• O = Observation
• T = Thinking
• A = Action

Interactive ReAct: Flexibly Interleaved OTA
Observe Quick

Think
Act Continue

Thinking
New Observation

Insert immediate
Continue
Thinking

Act ...

Advantages:

Think while listening: New observations can be inserted at any time

Speak while thinking: Respond immediately after quick thinking

Unified context: Maintains continuity of thought

SEAL Thinking Layer: Interruptible Interactive ReAct Loop
Key Insight: LLM thinking speed far exceeds voice I/O, fully utilize the "gap time"

🧠 LLM Processing Speed

Input processing: 500+ tokens/second

Thinking/Output: 100+ tokens/second

🗣️ Voice I/O Speed

Voice input/output: Only 5 tokens/second

Speed difference: 20-100 times

In the "gap time" outside of observation (voice input) and action (voice output), we have ample time for deep thinking! The rigid observe-think-act loop just
doesn't fully utilize this gap time!

⚡ Fast Thinking → 🐢 Slow Thinking → 🐌 Continuous Thinking

1. Quick Response (0.5s): 50 tokens of quick thinking → Immediate preliminary response (within 5s)

2. In-depth Analysis (after 5s): 500 tokens of slow thinking → Generate a more complete answer

3. Continuous Thinking (as needed): If 500 tokens are still not enough, continue thinking for 5 more seconds → Continue generating the answer until
thinking and speaking are complete. If multiple rounds of thinking are needed, the result is to continuously output a summary of the current round of
thought, like a person "thinking out loud".

Interactive ReAct: Think while Listening

Gracefully handling interruptions in conversation

Traditional ReAct: As soon as the user interrupts, all previous thoughts are discarded, and it has to start over.

Interactive ReAct: Retains the interrupted thought process, appends the new user input, and lets the model continue thinking from
where it left off.

<user>I want to change my plan from the current $109 to your new... </user>
<think>The user wants to change their plan, currently on the $109 plan.
Let me check the information on the new plan...
Need to know: 1) User's current plan details 2) New plan price...<interrupted/></think>
<user>(interrupts) By the way, is the new plan the one that's $79 a month?</user>
<think>(Continues previous thought) The user confirmed the new plan price is $79.
This will save $30 per month, going from $109 to $79.
I still need to confirm: 1) Differences in plan content 2) Any contract restrictions...</think>
<assistant>Yes, the $79 plan. Let me confirm, your current $109 plan includes...</assistant>

Advantage: The thought process is coherent and can quickly adjust strategy based on the latest information.

Interactive ReAct: Speak while Thinking

Using "filler words" to buy time for deep thought and reduce first-word latency

Scenario: A user asks a complex question, and the agent needs time to think.

Traditional ReAct:

<user>Do you confirm ordering this plan?</user>
* (a long silence of up to 10 seconds...) *
<assistant>After consideration, I confirm the order.</assistant>

Interactive ReAct:

<user>Do you confirm ordering this plan?</user>
<think> (quick thought, <0.5s) </think>
<assistant>Let me just confirm, this is the $79 a month plan, right?</assistant> (preliminary response)
<think> (in-depth thought) </think>
<assistant>Yes, this plan is a great deal. I confirm the order!</assistant> (final answer)

Advantage: Greatly improves the fluency of the interaction, avoiding awkward long waits.

Interactive ReAct: Detailed Sequence Example

A complete conversational sequence of deep thinking

<user>Do you confirm ordering this plan?</user>

<think>This is a serious question, I need to use a filler phrase first, then think deeply.</think>

<assistant>Let me just confirm, this is the $79 a month plan, right?</assistant>

<think>Let me think deeply. The user's original plan was $109, now it's down to $79.

The user's Wi-Fi speed is reduced from 800 Mbps to 400 Mbps,

but the user said they are okay with the speed reduction.<interrupted></think>

<user>Yes, $79 a month.</user>

<think>The customer service representative confirmed this information, but I need more time to think,

so I need another filler phrase.</think>

<assistant>Let me think...</assistant>

<think>Continuing to think, the plan offered by the customer service includes... it looks pretty good overall,

but to be safe, I need to confirm the plan information again.</think>

<assistant>This plan looks good, but I'd like to confirm again, besides the Wi-Fi speed,

do all other services remain unchanged?</assistant>

<user>Yes, all other services remain unchanged.</user>

<think>Looks good, I should proceed with the booking.</think>

<assistant>Great, I'll book it now!</assistant>

Interactive ReAct: Interruption Handling Example

Interruption and resumption in real-time conversation

<user>This is Alaska Airlines, how can I help you?</user>

<think>Finally past the IVR and connected to a real person. I need to briefly describe the user's needs.</think>

<assistant>I'd like to book a flight from San Francisco to Seattle, for the price of<interrupted></assistant>

<user>What date are you planning to depart?</user>

<think>The customer service interrupted me. I need to state the user's departure date.

I found in the context that it's September 1st.</think>

<assistant>Departing on September 1st, one way.</assistant>

<user>Let me check that for you, please hold.</user>

<think>I need to wait for the operation to complete.</think>

<assistant><wait></assistant>

<user>[SYSTEM HINT] There has been no voice from the other party for 10 seconds.</user>

<think>The customer service is checking for flights, I can ask for an update.</think>

<assistant>Have you found anything?</assistant>

<user>I've found 10 flights so far. What time would you like to depart?</user>

<think>This is a simple question. The user wants the cheapest option, and if the prices are similar, a morning departure.</think>

<assistant>I'm looking for the cheapest price<interrupted></assistant>

<user>Economy or business class?</user>

<think>The customer service interrupted me. I need to describe my price preference.</think>

<assistant>Economy class, as cheap as possible. If prices are similar, I'd prefer a morning departure.</assistant>

Note: Only the most recent turns of thought are kept to save context. For older turns, only <user> and <assistant> are retained.

Training an Adaptive Thinking Model for Interactive ReAct

Training Method

Label Design:

Multi-turn alternating <think> and <assistant> tags

Support for interruption and continuation of thought

Data Source:

Use Claude 4 Sonnet to generate training data

Avoid using OpenAI/Gemini models (thought processes are summarized)

Data Quality Control:

Diverse thinking scenarios

Balance of simple and complex questions

Include interruption and resumption cases

Optimization Goals

Core Capabilities:

Quickly determine if deep thinking is needed

Natural filler words and time management

Avoid hallucinations on simple questions

Performance Metrics:

First-word latency < 500ms

No degradation in thought quality

Significant improvement in user experience

Interactive ReAct: Data Engineering Essentials

Thought Length Control
1. First-turn thought: Strictly control within 50 tokens (~0.5 seconds)

2. Simple question optimization: Minimize thought time, complete in a
single turn

3. Thought length as part of the RL reward function

Scenario-based Handling
Simple greetings: Respond directly without deep thought

Complex decisions: Generate appropriate filler words + deep thought

Multi-turn dialogue: Maintain context coherence

Interruption Handling Capability

1. Thought interruption recovery:

Utilize existing thought content

Quickly generate an appropriate response

Continue the unfinished reasoning

2. Speech interruption handling:

Record the point of interruption

Understand the other party’s interjection

Naturally connect to the subsequent conversation

Layer 3: Execution Layer

Converting discrete action commands into continuous real-world signals

Input

Discrete action commands: speak(...) , click(...)

Output

Continuous signals (voice waveform, mouse trajectory)

The "Last Mile" Problem in Computer Use Agents

Moravec’s Paradox in Agents

The model "knows" what to do
Powerful world knowledge: Multimodal models can accurately
understand screen content and clearly describe the operational
goal.

Example: "Click that blue 'Submit' button."

The model "can’t do" it
Clumsy actions: Difficult to accurately output click coordinates
or perform precise actions.

Action Space conflict: Pre-training data is mostly text, lacking
data to map high-level instructions to precise physical
coordinates.

Why the Inaccuracy?

Difficulty in outputting coordinates
Unfriendly to LLMs: Requiring an LLM to directly output (x,
y) coordinates is like asking a human to state the precise
coordinates of a point on the screen out of thin air—very difficult
and unnatural.

Limitations of "Bounding Box" Assistance
Method: Number all clickable elements on the page and have the
LLM output the number.

Problem: For complex interfaces, there can be hundreds of boxes
(e.g., Gmail interface, where every email and category is a
clickable area), making the screen cluttered and unusable. Some
software cannot even have bounding boxes drawn (e.g.,
document editors, spreadsheet editors, drawing software, video
editing software).

Solution: Train an End-to-End VLA Model

Option 1: Main model directly outputs mouse click
coordinates

Task: Given a screenshot and the full agent context, the LLM directly
outputs click coordinates, such as click(x,y) .

Training: Use the LLM’s coding ability to generate a massive number
of test pages for RL.

Pros: A single model completes the click action end-to-end, with lower
operational latency.

Cons: No mouse movement trajectory, similar to web crawlers, easily
identified as a bot; model is sensitive to screen resolution; requires RL
training of a larger main model, which is costly.

Option 2: Train a separate VLA model to imitate
human mouse movement patterns

Imitate human operation: Adopt a "move-finetune-click" closed-loop
feedback model.

Architecture: The action output by the main model describes the
desired click location or operation in natural language. The VLA model
generates the specific mouse movement or click action and quickly
adjusts the next action based on the relative position of the mouse
pointer and the element.

Requirement: A low-latency (~100ms) VLA model that can quickly
adjust the mouse pointer position based on natural language
instructions like "click the product in the third row, second column" or
"click the search button" until the operation is complete.

Pros: Can pass most CAPTCHAs based on mouse trajectory detection;
not sensitive to screen resolution; the VLA model only needs to
perform grounding tasks, can be smaller, and training cost is lower.

Cons: The main model needs to output intermediate natural language
expressions, which are then handled by the smaller VLA model, leading
to higher latency; intermediate expressions can be ambiguous,
potentially reducing operational accuracy.

Core Idea: Borrow VLA models from the robotics field and post-train the model through RL to directly output actions.

How Text-to-Speech Passes the Turing Test

🧠 Natural Patterns of Human Speech
Thinking speed < Speaking speed

When unsure what to say next → naturally produces:

Pauses (thinking time)

Filler words ("um," "uh," "like")

Repetitions ("this, this…")

🤖 The "Too Perfect" Problem of AI
Thinking speed >> Speaking speed

Always generates clean, complete sentences → leading to:

Overly fluent (no pauses)

Zero filler words

Immediately reveals it’s a machine

Solution: Main LLM generates cognitive pauses, then TTS generates speech
Main LLM

Generates text + control
tokens

Text with tag TTS Model
Language+Action→Aud

Natural speec
Main LLM: Decides where to pause

Sentence transitions: insert [THINKING]

Searching for words: insert [SEARCHING]

When uncertain: insert [UNCERTAIN]

TTS Model: Multimodal generator

Input: Text + control actions

Output: Corresponding audio

Core Insight: Human "imperfection" stems from the limits of thinking speed

Main LLM Generates Control Tags → TTS Renders

Control Tags Generated by Main LLM Actual Generation Process

1. Main LLM Output (simulating cognitive load)

2. TTS Model Processing

Input: Language (text) + Action (control tags)

Processing: Multimodal generation (Language + Action → Audio)

Output: Natural speech

Architectural Division of Labor: LLM Decides, TTS Executes

LLM inserts cognitive pauses based on context

[THINKING] "Um..." "Let me think"

[SEARCHING] "That..." "How should I put it"

LLM decides emotion and speech rate

[EMO:happy] "Great!"

[SPEED:0.8x] "Let me explain slowly"

LLM chooses speaking style

[STYLE:casual] "Hey, what's up"

[STYLE:formal] "Hello, how may I help you"

LLM outputs special sounds

[BREATH]

[SIGH]

[CLEAR_THROAT]

[LAUGH:small]

[STYLE:casual] [THINKING]

"I think, you know," [SEARCHING] "this"

"plan is pretty good" [CLEAR_THROAT] "What do you think?"

SEAL Architecture Summary: Agents with Real-time Environmental
Interaction

Perception Layer

Input: Continuous signals (voice, GUI)
Output: Discrete event stream
Solves: Latency, unnatural interruptions, and
acoustic information loss in traditional voice
perception.

Thinking Layer

Input: Discrete event stream
Output: Interleaved thought/action
commands
Solves: The serial bottleneck of traditional
ReAct, enabling interruptible, asynchronous
think-while-listening and speak-while-
thinking.

Execution Layer

Input: Discrete action commands
Output: Continuous signals + feedback events
Solves: The "last mile" problem of clumsy
agent actions and lack of feedback, forming a
closed action loop.

Future Outlook: End-to-End Model

A unified event-driven loop that decouples perception, thinking, and execution to achieve true real-time and parallel processing.

Three Levels of AI Agent Interaction with the World

From Voice to Vision to the Physical World

🗣️ Real-time Voice Calls
Input Modality: Voice

Output Modality: Voice

Data Density: 15-50 tokens/second

Latency Requirement: <500ms

Main Challenge: Balancing fast and slow
thinking

💻 Graphical User Interface
Operations

Input Modality: Vision

Output Modality: Mouse clicks, key
presses, etc. action sequences

Data Density: ~2K tokens/screenshot

Latency Requirement: <1 second

Main Challenge: Precise action execution

🤖 Physical World
Interaction

Input Modalities: Vision + Voice + Touch

Output Modalities: Voice + Joint action
sequences

Data Density: ~20K tokens/second

Latency Requirement: <100ms

Main Challenge: Real-time perception and
control

Technical challenges increase at each level, but solutions can be reused and transferred across levels.

Part Two: Agents Learning from Experience

Why Agents Need to Learn from Experience: From "Smart" to
"Proficient"

SOTA Model ≈ Top Graduate
Knowledgeable: Possesses vast general knowledge.

Lacks Experience: May not perform as well as experienced
professionals on specialized tasks (e.g., accounting and tax filing).

Pine AI’s Business Challenges
Verifying Information: Pine AI helps users make phone calls. The first
time calling a customer service, it doesn’t know they need to verify the
last four digits of a credit card. The second time calling the same
company’s customer service, can it ask the user for the credit card
information beforehand?

Task Procedures: The first time processing a service cancellation, the
customer service on the phone said a form needs to be filled out. The
second time processing such a cancellation, can it directly fill out the
form instead of making a call?

Business Rules: What are the conditions for receiving a certain
discount? (e.g., veterans, loyal customers of over 2 years)

Price Estimation: Is $60 a month for 3 Gbps home broadband in a
certain area high or low? Is there room for negotiation?

Core Problem: Many business processes are dynamic and not publicly documented. Simply improving the general capabilities of the base
model cannot solve these "experience-based" problems.

Learning from Experience: A Fundamental Problem in Machine
Learning

The Essence of Machine Learning is to Learn from Experience

Paradigm 1: Post-training
via SFT/RL

Method: Parameter Update (Post-training)

• Update weights via gradient descent

• Requires a large amount of labeled data

• Model is fixed after training

• Learning process is slow and expensive

Paradigm 2: In-context
Learning

Method: In-context Learning

• Implicit learning through the attention
mechanism

• Utilizes long context as temporary memory

• Learning effect is limited to the current
session, not permanent

Paradigm 3: Externalized
Learning

Method: Externalizing Knowledge and
Processes

• Knowledge Base: Efficient, reliable, and
hallucination-free external knowledge

• Tool Generation: Codifying processes to
achieve self-evolution

• Transcending the limitations of
parameterized knowledge

💡 Core Insight: From "optimizing model parameters" to "knowledge representation beyond parameters"

Method 1: Post-training - RL Makes Agents "Proficient"

Core Insight: RL struggles to improve IQ but can solidify experience

Limitations of RL ❌
Cannot improve IQ: Reasoning ability is capped by the base model

Cannot create knowledge: Can only optimize the application of existing
knowledge

Depends on base model capabilities: Cannot compensate for
fundamental flaws

The True Value of RL ✅
Instruction following: Internalize hundreds of complex rules (industry
know-how)

Success rate improvement: Turns processes into "muscle memory,"
improving success rates and converting pass@k to pass@1

Latency reduction: Internalizing rules from prompts into the model can
shorten the chain of thought, reducing response latency in real-time
interactions

Practical Path Based on SFT/RL
Basic Rule Following

Constitutional AI

Following complex rules through RLHF

Tool-use Training
Model as Agent

The key is to build a simulation environment and reward function

For example, many agent operations depend on interaction with the
external world (live phone calls, web operations, robotics). Some of these
experiments are costly, so high-quality simulation environments are
needed, or training in low-cost real interaction scenarios and then
transferring the capabilities to high-cost scenarios.

Feasibility Verification of Low-Cost RL Solutions

Core Challenges
Data scarcity: High-quality tool-use trajectories are difficult to obtain

Evaluation difficulty: The correctness of tool use is hard to judge
automatically

Training cost: Traditional RL requires significant computational resources

Solutions

1. Automatic Trajectory Generation:

Use LLMs to generate tool-use sequences

Execute and verify for correctness

2. Simplified Reward Design:

Binary reward (success/failure)

Reduce the need for manual labeling

Experimental Results

Training Efficiency:

Effective with just a few thousand trajectories

Suitable for academic research and small-scale applications

Performance Improvement:

Tool-use accuracy: +15-20%

Task completion rate: +25-30%

Significantly enhanced error recovery ability

Implications:

RL training for tool use does not necessarily require massive resources

Well-designed small-scale data can also bring significant improvements

arxiv:2504.11536

https://arxiv.org/abs/2504.11536

Kimi K2 - Model as Agent

Large-scale Agent Data Synthesis and Joint RL Training

Based on the Kimi K2 Technical Report

Agent Data Synthesis Pipeline
Scale generation: Systematically construct tools, agents, tasks, and
trajectories

Environmental diversity: Combine real and simulated environments

Verification mechanism: Ensure the correctness and high fidelity of
trajectories

Technical Innovations:

1. MuonClip Optimizer: 15.5T tokens of zero-loss peak training

2. 32B active parameters: 1T total parameter MoE architecture

3. Token efficiency: Maximize the learning signal from each token

RLVR (RL with Verifiable Rewards)
Verifiable task rewards

Self-Critique Rubric

Extend from static alignment to open domains

Model as Agent Concept: The first open-source model to truly
implement "Model as Agent"

Model as Product Concept: The simulation environment
required during RL training is already an agent product. Therefore,
once the model training is complete, the agent can be directly
released as a product.

https://arxiv.org/abs/2507.20534

Kimi K2 Critic Rubrics: An Evaluation Framework for General RL

A Systematic Approach from Rules to Self-Critique

Core Rubrics

1. Clarity and Relevance

Respond to user intent concisely and sufficiently

Eliminate unnecessary details

Use efficient formatting

2. Conversational Fluency and Engagement

Maintain a natural and smooth conversation

Provide relevant observations and insights

Adapt tone to different contexts

3. Objective and Grounded Interaction

Avoid meta-comments, focus on the task itself, and maintain a neutral,
professional tone

Prescriptive Rules and Limitations

Prohibitive Rules (Prescriptive):

Do not start with praise

Avoid explicit self-justification

Reduce unnecessary qualifiers

Known Limitations:

May be overly confident, lacking caution in ambiguous scenarios, and
preferring a single, clear answer

Innovations:

Systematize human preferences into evaluable rules

Internalize these rules through RL rather than relying on prompts

Achieved a closed loop of evaluation and training

Method 2: In-context Learning - Using Conversation History as Built-in
Memory

The Transformer’s Attention Mechanism: An Efficient "Information Query"

The core of the Transformer is the Self-Attention mechanism, which can be understood as a key-value database based on similarity
matching.

Query (Q)

The "query need" of the current token

Key (K)

The "content index" of historical tokens

Value (V)

The "actual content" of historical tokens

Calculation Process: Use the current Q to compute similarity with all historical Ks. The resulting weights are used to perform a weighted
sum of the corresponding Vs.

Note: Unlike a vector database where K and V are combined (the content to be searched), and the query vector Q has the same
distribution as the content (both are text embeddings), in a Transformer, the distributions of Q, K, and V are all different.

Two Bottlenecks of Long Context: Memory Wall vs. Compute Wall

Two Fundamental Directions for Long Context Optimization

🧠 Memory Wall

Problem: Excessive KV Cache usage

Traditional approach: batch × seq_len × d_model

128K context requires 56GB of KV Cache

Limits batch size and maximum sequence length

Optimization Solutions:

MLA (DeepSeek-V2): Low-rank compression

16x compression ratio

128K requires only 3.5GB

GQA: Shared KV heads

MQA: Single-head KV

⚡ Compute Wall

Problem: O(n²) attention complexity

Traditional approach: Interaction between all token pairs

100K sequence = 10 billion computations

Extremely slow for both training and inference

Optimization Solutions:

NSA (DeepSeek-V3): Sparse attention

Computes only important token pairs

Hardware optimization for acceleration

Linear Attention: O(n) complexity

Flash Attention: IO optimization

Memory Wall: DeepSeek MLA (Multi-head Latent Attention)

A Fundamental Method to Reduce KV Cache Memory Overhead

Core Innovation: DeepSeek-V2 compresses the KV Cache to 1/16 of its original size through MLA, significantly reducing memory usage
(arxiv:2405.04434).

Technical Principle
Low-rank Projection: Project KV vectors into a low-dimensional
latent space

Original: d_head × n_heads

Compressed: c_kv (typically 512)

Shared Representation: Multiple attention heads share the same low-
dimensional KV representation

Decoupled RoPE: Separate positional encoding from content
representation

Content is passed through the low-rank space

Positional information is processed independently

Practical Effects
Memory Savings:

KV Cache reduced by 93.75% (16x compression)

128K context requires only 3.5GB of KV Cache

Performance Preservation:

Almost no performance loss on benchmark tests

Long-text understanding ability is fully maintained
Inference Acceleration:

Reduced memory bandwidth requirements

Increased batch processing throughput

MLA is one of the core technologies enabling DeepSeek-V2 to efficiently handle long contexts

https://arxiv.org/abs/2405.04434

Compute Wall: Sparse Attention

Core Insight: Turning the KV Cache into a Vector Database

Traditional Full Attention

Problem: Must compute the full n×n matrix

Sparse Attention

Advantage: Computes only k<<n relevant items

Disadvantage: Traditional hash-based acceleration methods for
vector databases are not applicable because Q and K have different
distributions in space, and high-similarity matches are rare.
Therefore, finding the top K still requires scanning a large
proportion of K. If heuristics (e.g., attention sinks for the first few
tokens and recent tokens) are used for filtering, some high-
matching K’s may be missed.

Compute all QK similarities

scores = Q @ K.T # O(n²)

attention = softmax(scores)

output = attention @ V

Find only the Top-K relevant K's

top_k_indices = vector_search(Q, K, k) # O(n log n)

sparse_scores = Q @ K[top_k_indices].T

sparse_attention = softmax(sparse_scores)

output = sparse_attention @ V[top_k_indices]

Compute & Memory Wall: Linear Attention

Core Idea: Change the computation order to achieve linear complexity

How it Works
Standard attention is calculated as softmax(Q * K^T) * V .

Linear attention approximates softmax using a kernel function (\phi)
and changes the computation order to (\phi(Q) * (\phi(K)^T *
V)) , thus avoiding the construction of a huge n x n matrix.

Advantages

Extremely low computational cost, fast inference speed.

Disadvantages
It is a "lossy compression," performing poorly on tasks requiring "needle-in-
a-haystack" precise retrieval.

The needle-in-a-haystack capability is the foundation of In-Context
Learning, which in turn is the basis for instruction-following and long-chain
reasoning abilities, which are the foundation of tool-use capabilities. If the
needle-in-a-haystack ability is weak, instructions and data in a long context
cannot be fully utilized.

For shorter contexts, with the same KV Cache size, Softmax Attention
performs better than Linear Attention.

Case Study: Google’s Infini-Attention

Efficient Transformer for Infinite Context

Core Innovation: Infini-Attention introduces compressive memory into the traditional attention mechanism, enabling infinite context
processing with bounded memory (arxiv:2404.07143).

Architectural Design
Dual Attention Mechanism:

Local Attention: Handles masked attention for the current
segment

Long-term Memory: Compressive storage based on linear
attention

Unified Computation: Reuses the same set of Q, K, V for both types of
attention calculations

Memory Update: Old KV states are stored in the compressive memory
instead of being discarded

Experimental Results
Memory Efficiency: Achieves a 114x memory compression ratio
compared to standard attention

Scalability: A 1B model naturally extends to a 1M sequence length

SOTA Performance: An 8B model achieves new state-of-the-art
results on a 500K-length book summarization task

https://arxiv.org/abs/2404.07143

DeepSeek NSA: Native Sparse Attention

Hardware-aligned Hierarchical Sparsity Strategy

Core Innovation: NSA (Native Sparse Attention) combines algorithmic innovation with hardware optimization to achieve efficient long-
context modeling (arxiv:2502.11089).

Technical Architecture
Dynamic Hierarchical Sparsity:

Coarse-grained: Token compression to maintain global
awareness

Fine-grained: Token selection to ensure local precision

Hardware Optimization:

Algorithm design balances arithmetic intensity

Implementation optimized for modern GPU architectures

Performance
Quality Preservation: Matches or exceeds full-attention models on
various benchmarks

Significant Acceleration:

Decoding acceleration at 64K sequence length

Substantial improvements in both forward and backward
passes

Practicality: Can be trained directly without adapting pre-trained
models

NSA is one of the key technologies enabling DeepSeek-V3 to efficiently handle long contexts

https://arxiv.org/abs/2502.11089

MiniMax-01: Lightning Attention

A Practical Solution Combining Linear Attention + Softmax Attention

Core Innovation: MiniMax-01 achieves efficient processing of ultra-long contexts through Lightning Attention and a MoE architecture
(arxiv:2501.08313).

Lightning Attention
Linear Attention Mechanism: Replaces traditional softmax attention for
linear complexity

Hybrid Architecture Design:

Insert 1 Softmax Attention block after every 7 Lightning Attention
blocks

A total of 80 layers to balance long- and short-range dependencies

The Softmax Attention layers ensure the "needle-in-a-haystack"
information retrieval capability, thereby guaranteeing model abilities
like instruction following and long-chain reasoning

Technical Details:

Based on Transnormer blocks (Qin et al., 2022a)

Four-way parallel processing for Q, K, V, G

Combination of SiLU and Sigmoid activation functions

Achievements
Context Length:

Supports 1M tokens during training

Extrapolates to 4M tokens during inference

Model Open-Sourced

https://arxiv.org/abs/2501.08313

Theoretical Insight: Learning without Training

Core Finding: Transformer blocks can implicitly update MLP weights through context

Implicit Weight Update Mechanism

Key Insight:

Stacking Self-Attention and MLP layers produces a special effect

Contextual information is converted into a low-rank update to the MLP
weights

Each attention head contributes a rank-1 update

Significance: Explains how LLMs can learn new patterns from
prompts without training

The Nature of In-Context Learning

Feature Traditional
Training In-Context Learning

Weight Update Explicit (gradient) Implicit (attention)

Persistence Permanent Current sequence
only

Computation Backpropagation Forward pass

Adaptation
Speed Slow (many epochs) Fast (single

inference)

LLMs are effectively performing "soft training" during inference

Explains why few-shot learning is so effective

Provides a theoretical basis for designing better prompts

Based on the paper "Learning without training: The implicit dynamics of in-context learning" (arxiv:2507.16003)

Simplified mathematical expression

MLP_effective = MLP_original + Σ(rank_1_updates)
where rank_1_updates come from the attention output

https://arxiv.org/abs/2507.16003

ICL vs. Fine-tuning: Counterintuitive Findings on Implicit Pattern
Learning

Core Finding: For tasks containing implicit patterns, ICL can capture and utilize these patterns better than Fine-tuning

🔍 Experimental Design

Implicit Pattern Task Types:

Mathematical Computation: Expression evaluation, Boolean
functions

Textual Reasoning: Relational reasoning (judging city connections)

Code Understanding: Output prediction

Implicit Pattern Example:

📊 Key Experimental Results

Method Accuracy
Improvement

Sample Efficiency

ICL Significant Just a few examples

Fine-
tuning Limited

Needs thousands of times
more samples

Performance Comparison:

ICL can quickly identify deep patterns

Fine-tuning struggles to learn implicit patterns even with more data

ICL performs more robustly on OOD (out-of-distribution) data

Model Scale Impact:

Verified on models from 0.5B to 7B parameters

The advantage of ICL is consistent across all model sizes

Based on the paper "Deeper Insights Without Updates: The Power of In-Context Learning Over Fine-Tuning" (arxiv:2410.04691)

Expression contains a zeroing term

(6-1) + (6-6) * (-10+1+2+13) = 5

↑ This part is 0, can be a shortcut

Connection shortcut in relational reasoning

A-B-Z direct connection vs. A-B-C-D-...-Y-Z

https://arxiv.org/pdf/2410.04691

Circuit Shift Theory: Why is ICL Better at Pattern Recognition?

Circuit Shift Mechanism

What is a Circuit?

A subgraph in the model responsible for a specific behavior

Composed of specific attention heads and MLP layers

Represents the model’s "thinking path" for solving a problem

Key Finding: ICL leads to a larger-scale circuit shift, meaning ICL more
thoroughly changes the model’s problem-solving method

Activation Patching Analysis:

By manipulating the activation values of specific components

Quantify the contribution of different components to the task

Found that ICL activates different circuit patterns

Pattern Capturing Ability:

ICL: "Can quickly capture deep patterns and significantly improve accuracy"

Fine-tuning: "Even with thousands of times more training samples, the
improvement is very limited"

Mechanism Explanation:

ICL is not simple pattern matching but activates different computational
circuits in the model

Although fine-tuning updates parameters, the circuit shift is smaller for
implicit pattern tasks

This explains why ICL can achieve better results without parameter updates

Explaining the difference between ICL and Fine-tuning from an interpretability perspective

Method 3: Externalized Learning

Transcending the Fundamental Limitations of Parameterized Knowledge

Separating knowledge and processes from model parameters to achieve reliable, efficient, and evolvable persistent learning.

3.1 Knowledge Base

Solving the unreliability, inefficiency, and hallucination
problems of parameterized knowledge

Separate volatile, precise knowledge from model parameters

Achieve efficient, reliable, and hallucination-free knowledge retrieval

Support rapid updates and expansion

3.2 Tool Generation

Solving the inefficiency and unreliability of parameterized
learning

Solidify repetitive processes into reliable, efficient code

Agents achieve self-evolution by creating tools

From minimal pre-definition to maximum self-evolution

3.1 External Knowledge Base - Rapidly Accumulating Experience

Knowledge Representation
Summary

Content: Store summary, conclusive information.

Example: "To cancel service B from company A, you need to verify the
user’s identity by providing the order number, registered email, and the last
four digits of the credit card number."

Raw Details
Content: Store raw details, such as the complete record of customer service
conversations.

Use descriptive filenames and store in the file system.

Tree-based Summarization (Example: RAPTOR)
Treat raw details as leaf nodes of a tree, perform clustering to generate
summaries, then cluster the summaries to generate nodes at a higher level
of the tree.

For retrieval, you can use a vector database for similarity matching or index
it like a file system.

Agentic Autonomous Summarization
The agent autonomously decides to use tools like write_file ,
edit_file , etc., to write summaries to the file system.

Knowledge Retrieval
Automatic Matching and Context Insertion

Automatically match corresponding entries from the knowledge base based
on user ID or business type and insert them into the context.

Agentic Semantic Search
The agent autonomously decides which keywords to use for searching. The
retrieval can use vector databases or methods like BM25 to match against
the knowledge base.

Agentic File System Reading
The agent autonomously decides to use tools like read_file , find ,
grep , etc., to read content from the file system.

Equip the agent with an external knowledge base to record and summarize task experiences for retrieval in similar scenarios.

Contextual Retrieval: Improving RAG Retrieval Accuracy

Core Problem: Traditional RAG loses context when chunking documents, leading to decreased retrieval accuracy.

Contextual Embeddings & Contextual BM25
Before embedding and creating a BM25 index, add specific explanatory
context to each chunk.

Example Transformation

Implementation
Use Claude to automatically generate context for each chunk (50-100
tokens).

Results

Reduction in retrieval failure rate (top-20 chunks):

Contextual Embeddings only: ↓35%

Contextual Embeddings + BM25: ↓49%

+ Reranking: ↓67%

Key Advantages:

1. Preserves document context: Each chunk knows where it came from.

2. Improves exact matching: BM25 handles proper nouns, error codes, etc.

3. Enhances semantic understanding: Embeddings capture more accurate
meaning.

Best Practice Combination: Contextual Embeddings + Contextual BM25 +
Reranking + Top-20 chunks

Based on Anthropic’s Contextual Retrieval

Original chunk (lacks context)

original = """The company's revenue grew by 3%

 over the previous quarter."""

Contextualized chunk

contextual = """This chunk is from an SEC filing

 on ACME corp's Q2 2023; previous

 quarter revenue was $314M.

 The company's revenue grew by 3%..."""

https://www.anthropic.com/news/contextual-retrieval

Learning Method Comparison: External Knowledge Base vs. Built-in
Attention

External Knowledge Base (RAG)
Analogy: Guiding an LLM that doesn't support thinking to think
by using a "Think step by step" prompt.

Pros: No retraining required, plug-and-play. Can use additional
compute power for multi-faceted summarization, and the
summarization process can flexibly incorporate industry know-
how.

Cons: Effectiveness depends on the precision and recall of
retrieval. Often, semantically related content across multiple
fragments is difficult to extract. Additionally, RAG-extracted
fragments lack context, affecting understanding.

Built-in Attention (Long Context)
Analogy: A model that natively supports long context and built-
in thinking capabilities.

Pros: End-to-end optimization, higher potential for
effectiveness.

Cons: Currently costly. The summarization process is generally
determined by the model itself, making it difficult to incorporate
industry know-how or leverage additional compute power.

Fine-tuning vs. RAG: An Empirical Comparison of Knowledge Injection
Methods

💡 Paper’s Core Insight: RAG is not only more effective but also avoids the knowledge forgetting and hallucination problems that fine-
tuning can cause.

The Paper’s Comparative Experiment
Compared Unsupervised Fine-tuning with RAG

Evaluated the handling of Existing Knowledge and New Knowledge

Key Findings
1. RAG performs better overall

Outperforms fine-tuning in handling both existing and new knowledge

More reliable retrieval of factual information

2. Limitations of Fine-tuning

LLMs have difficulty learning new factual information through
unsupervised fine-tuning

Requires multiple variations of the same fact to learn effectively

3. Improvement Strategies

Expose the model to multiple expressions of the same fact during
training

Use a combination of methods rather than relying on a single one

Scenarios Where RAG Excels
When accurate injection of factual knowledge is needed

Handling new domains or new knowledge

Avoiding contamination of model parameters

Challenges of Fine-tuning
Unsupervised fine-tuning alone is not effective for injecting new facts

Requires data augmentation: multiple expressions of the same knowledge

May affect the model’s original capabilities

Recommended Strategy
Prioritize RAG for knowledge injection

If fine-tuning is necessary, ensure data diversity

Consider hybrid solutions to leverage the strengths of both

Based on the paper "Fine-Tuning or Retrieval? Comparing Knowledge Injection in LLMs" (EMNLP 2024)

https://aclanthology.org/2024.emnlp-main.15.pdf

Large-Scale Knowledge Summarization with LLMs

Problems with Traditional Knowledge Base
Construction

Fragmented knowledge: A vast amount of knowledge and industry
experience is not summarized

Inefficient querying: Information is scattered across the internet

High cost: The cost of summarizing industry knowledge is extremely
high

Difficult to build knowledge bases: Building internal company
knowledge bases is challenging

Building Large-Scale Knowledge Bases with
LLMs

General Knowledge ➜ Foundational Model

Model training itself is a knowledge summarization
process

Transformers are not good at memorizing a large number
of factual details, which would lead to an explosion in
parameter count

Factual Information, Industry Experience ➜ LLM-automated
Summarization

Specific facts like personal information, industry data

Industry experience like verification information,
procedures, rules, price estimations

Organize massive amounts of raw data to form a
structured knowledge base

💡 Core Insight: LLMs can convert compute power into a scalable knowledge base

Turning compute power into a scalable knowledge base

3.2 Tool Generation - Enabling Agent Self-Evolution

Minimal Pre-definition Principle
Minimalist Architecture: Equipped with only a single core
component (Web proxy)

Avoid Over-design: Do not pre-define complex tools and workflows

Prioritize Generality: Reduce domain-specific hard-coding

Results: GAIA benchmark

Pass@1: 75.15%

Pass@3: 87.27%

Outperforms many complexly designed Agent systems

Maximum Self-Evolution Mechanism

Core Capabilities:

1. Autonomous Tool Creation: Generate new tools based on task
requirements

2. Capability Refinement: Iteratively improve the performance of
existing tools

3. Experience Reuse: Solidify successful patterns into reusable
components

Model Context Protocols (MCPs):

Core Idea: From Minimal Pre-definition to Maximum Self-Evolution (Alita: (arxiv:2505.20286))

Agent automatically generates task-related protocols

mcp = agent.generate_protocol(task)

Execute and optimize

result = agent.execute_with_mcp(mcp)

Store successful patterns

agent.store_successful_pattern(mcp)

https://arxiv.org/abs/2505.20286

The Challenge of Scaling Tools: MCP-Zero Active Tool Discovery

The Problem of Exploding Tool Numbers

Scale Challenge: MCP ecosystem has 308 servers, 2,797 tools

Dilemma of Traditional Methods:

Full Injection: GitHub MCP with 26 tools requires 4,600 tokens

The complete toolset would require 248k tokens → Context explosion

Static Retrieval: Selection based on the initial query, cannot anticipate
task evolution

"Debugging a file" requires file system + code analysis + command
execution

Fundamental Problem: The agent becomes a passive selector, not an active
discoverer

MCP-Zero: From Passive to Active

Core Concept: Let the agent actively identify capability gaps and request tools
on demand

Three Mechanisms:

1. Active Tool Request: Agent generates a structured request

server: github # Platform domain

tool: search_repos # Operation type

2. Hierarchical Semantic Routing: First filter by server, then match the tool

3. Iterative Capability Expansion: Dynamically discover and build toolchains
during execution

Measured Effects:

APIBank test: 98% token savings

Accurately selects from 3000 tools while maintaining high accuracy

Stable performance as the tool ecosystem grows

Based on the paper MCP-Zero: Active Tool Discovery for Autonomous LLM Agents

https://arxiv.org/pdf/2506.01056

Agent Auto-generates Tool Case 1: Intelligent RPA for Computer Use

The Dilemma of Computer Use
Slow Speed: Every step requires interaction with the LLM, resulting in
high latency.

High Cost: Each operation is an expensive LLM call.

Inspiration from Traditional RPA
Fast Speed: Runs pre-written scripts, much faster than humans.

Problem: Cannot handle dynamic interfaces, lacks understanding and
judgment.

New Idea: Let the LLM automatically summarize the operation process into an "intelligent RPA" tool.

Intelligent RPA: Technical Implementation Details

Core Challenges of Generating RPA Code from Operation Sequences

Three Major Technical Hurdles

1. Coordinate Drift Problem

Page element positions change dynamically

Clicking fixed coordinates often fails

2. Dynamic Content Judgment

Some steps require understanding the content

Example: Selecting the cheapest flight ticket

3. Uncertain Response Time

Web page loading times are not fixed

Cannot handle exceptions

Solutions

1. Intelligent Element Localization

Use element ID/XPath instead of coordinates

Playwright automatically adapts to interface changes

2. LLM Analysis and Optimization

Distinguish between fixed processes and dynamic judgments

Extract automatable operation sequences

3. Event-driven Execution

Listen for browser event completion states

Intelligently wait for elements to be clickable

Automatically switch to LLM takeover on timeout

The Effect of Intelligent RPA

Use Case 1: Checking the Weather (9
steps)

Traditional Method: 47 seconds, 9 LLM calls

After Acceleration: 10 seconds, 2 LLM calls + 1 RPA

Use Case 2: Booking a Flight on the
Official Website (240 steps)

Traditional Method: 19 minutes, 240 LLM calls

After Acceleration: 4 minutes, 25 LLM calls + 4 RPAs

Core Advantage: Zero manual development cost, fully automatic generation, and can automatically generate new tools to adapt to
website changes.

Agent Auto-generates Tool Case 2: Agent Log Parsing and
Visualization

Challenge: Agent Execution Flow Logs
Requirement: Visualize the agent’s execution flow (trajectory) for
observation and debugging.

Format Diversity: The agent’s tools and sub-agents are diverse, each
with different parameter formats and tool return result formats, which
are constantly changing.

Large Log Volume: The entire agent execution process often has
hundreds of steps, requiring compressed display for better intuition.
But it must also be possible to expand the full details of each LLM call
and each tool call for debugging.

High Maintenance Cost: Manually written parsing code needs
constant updates and it’s difficult to predict all possible log formats.

Agent’s Self-Evolving Solution

Core Mechanism: Frontend automatically reports parsing failures
to the Agent.

1. Intelligent Recognition: Agent analyzes the pattern of the failed log.

2. Automatic Parsing Code Generation: Generates new frontend
parsing code based on the sample.

3. Automatic Testing of Parsing Code: Uses a virtual browser execution
environment to check if the new parsing code can correctly parse the
new log type (any errors), and uses a Vision LLM to check if the
visualization effect meets expectations.

4. Hot-Update Deployment: The parsing code is automatically updated.

Agent Auto-generates Tool Case 3: Automatic Diagnosis of Production
System Issues

Challenges in Production System Debugging
Difficulty in Problem Localization: Finding the root cause from a massive
amount of agent execution flow logs.

High Reproduction Cost: Production issues are difficult to reproduce in a
test environment.

Fixed Issues Tend to Reappear: High cost of building regression test
cases.

Agent’s Automated Diagnosis Flow

Working Mechanism: Automatically triages issues from production
environment agent execution flow logs and generates issue reports and test
cases.

1. Agent Execution Flow Log Analysis:

Combines system architecture documents and PRDs (Product
Requirement Documents) to automatically analyze if the agent’s
execution flow meets expectations.

2. Test Case Generation:

Automatically generates Regression Test Cases.

Ensures that the issue does not reappear after being fixed.

3. Work Item Creation:

Automatically creates a Scrum Work Item.

Includes a problem description, scope of impact, and a suggested fix.

Summary: From Post-training to In-context Learning to Externalized
Learning

Paradigm 1: Post-training

Method: RL Parameter Update

Pros: Solidifies experience into parameters, strong generality

Cons: Slow to update, high cost, unreliable for facts

Paradigm 2: In-context Learning

Method: Attention "Soft Update" during inference

Pros: Fast adaptation, no training required

Cons: Temporary, non-persistent, limited by context window

Paradigm 3: Externalized Learning

3.1 Knowledge Base

Pros: Solves hallucination problems, knowledge updates faster than post-
training, can leverage extra compute for in-depth summarization

3.2 Tool Generation

Pros: Codifies processes through tool generation, achieving efficient and
reliable automation

Externalized Learning: Beyond the Limitations of Attention

Evolution and Limitations of Learning Paradigms
1. Parameterized Learning (Training)

Mechanism: Gradient Descent

Pros: Internalized knowledge, strong generality

Limitations: High cost, slow updates, facts easily confused

2. In-context Learning (Inference)

Mechanism: Attention "soft update"

Pros: Fast adaptation, no training required

Limitations: Session-level, non-persistent, dependent on context
window

3. Externalized Learning

Mechanism: Structured read/write + code generation

Pros: Persistent, reliable, efficient, hallucination-free

Positioning: Combines the advantages of parameterized and in-context
learning

Why Externalized Learning is an Inevitable Trend

Fundamentally solves the three major problems of Transformers:

Hallucination and Unreliability: External knowledge bases provide a
verifiable, precise source of truth.

Inefficient Learning and Retrieval: Targeted retrieval is far superior to
"finding a needle in a haystack" among billions of parameters.

Clumsiness in Repetitive Tasks: Tool generation solidifies vague
"experience" into precise, efficient code.

Paradigm Shift in Agent Design:

Past: Static, all-knowing models

Present: Dynamic models dependent on context

Future: Learning entities that interact efficiently with the external world

🚀 Core Idea: Let the model do what it does best (reasoning), and entrust knowledge and processes to
more reliable external systems.

Attention opened the door to in-context learning, but it is not the end of learning.

Scaling Law: From Pre-training to RL

"We want AI agents that can discover like we can, not which contain what we have discovered. Building in our discoveries only makes it harder to see how the

discovering process can be done." — Rich Sutton, The Bitter Lesson

Phase 1: Pre-training based on predicting the next token
Core Law: The model’s performance predictably improves with increases in
computational resources, model parameters, and training data volume.

Implementation: Unsupervised pre-training on massive amounts of
internet text to learn general world knowledge.

Essence: Internalizing knowledge into the model’s parameters, forming a
vast, static knowledge base.

Achievement: Achieved general language understanding and reasoning
capabilities.

Phase 2: Reinforcement Learning: Post-training through
interaction with the world

Agents allow the model to move beyond passive learning to actively
exploring the world.

Interaction with:

Humans: Conversation and collaboration through real-time voice.

The Internet: Operating computers, browsing websites, using software.

The Physical World: Controlling robots, interacting with the real
environment.

Learning Method: Through reinforcement learning, discovering and
learning from the successes and failures of interactions, which is the second
curve of the Scaling Law.

Goal: To transform from a container of knowledge to an engine of discovery.

The Bottleneck of Scaling Law: The Precise Memory Limitation of Transformers
The Transformer architecture is not good at precisely and reliably memorizing and updating these highly dynamic, specific details.

Forcing memorization easily leads to hallucinations and information confusion, and is not cost-effective (requiring traversal of a large portion of all knowledge
during training and inference), becoming a huge obstacle for the Scaling Law.

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

The Future Path: Externalized Learning Continues the Scaling Law
"The two methods that seem to scale arbitrarily ... are search and learning." — Rich Sutton, The Bitter Lesson

Breaking the Bottleneck: Externalized Learning
The LLM itself provides powerful tools to solve the memory bottleneck—
summarization and code generation

Precise, Structured Knowledge Bases
SOTA LLMs can summarize unstructured experiences (like conversations,
documents) into structured knowledge

Before LLMs, this high-quality summarization required expensive domain
experts, so expert systems based on human-written rules could not scale;
but today, LLMs are like an infinite number of domain experts

In the NLP field, Summarization is the only traditional NLP topic that
remains active in the LLM era

Code as a Universal Knowledge Representation
LLMs can precisely describe any experience or knowledge as code

Code generation is not just a tool for programmers, but a universal,
structured data representation that is precise, verifiable, and composable

Co-evolution of LLMs with External Knowledge and
Tools

Model does what it does best: Leverage the powerful general reasoning
and understanding capabilities of LLMs

External systems do their job: Manage precise, dynamic knowledge and
processes with external knowledge bases and codebases

Co-evolution: The agent learns by interacting with external systems
(people, the internet, the physical world) and consolidates the learned
outcomes (compressed summaries of knowledge, tools) into the external
systems, forming a continuously strengthening closed loop

Continuing the Scaling Law
With more compute power, the agent can extract more detailed and precise
knowledge from its interactions with the world

Search: Corresponds to external knowledge bases and tool libraries

Learning: Corresponds to the LLM’s ability to summarize interaction
experiences into knowledge and code

"Externalized learning" breaks the limitation of the number of model
parameters, extending the boundary of the Scaling Law to the external
ecosystem of knowledge and tools

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

Pine AI

Our philosophy:

Everyone's contribution to the company's valuation should be in the tens of
millions of dollars.

We are looking for full-stack engineers who can build SOTA autonomous AI agents.

Requirements to Join Pine AI

🤖 1. Proficient in AI-assisted programming
80%+ of code written through human-machine collaboration

Coding interview: Complete feature development in 2 hours with AI
assistance

All internal systems built based on AI

💻 2. Love solving problems hands-on
"Talk is cheap, show me the code"

Become a combination of an architect and a product manager

Directly command the AI to reduce information loss

🏗️ 3. Solid software engineering skills
Complete documentation and testing

Make the code understandable and maintainable by AI

High-quality engineering practices

🧠 4. Understand LLM principles
Know the basic principles and capability boundaries

The right way to harness LLMs

Provide appropriate context and tools

🚀 5. Confidence to solve world-class problems
Strive for SOTA level

Grow with a startup

Constantly surpass existing levels

🎯 Our Mission

To truly solve users’ troubles and get things done by building agents that can
interact with the world in real-time and learn from experience.

Pine AI - Building Agents That Get Things Done

mail -s "Join Pine AI" -A /path/to/your_resume.pdf boj@19pine.ai

Two Clouds Over Agents: Real-time Interaction and Learning from
Experience

"The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large
margin."

— Rich Sutton, The Bitter Lesson

Powered by

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf
https://sli.dev/

