L

Pine Al: Al Agent that Make Calls to Get Things Done

~

4 What is Pine AI?

AI Agent that Takes Action

Like ChatGPT, but can make calls, send emails, and use computers to
complete tasks

Your Personal Assistant

Handles tedious customer service interactions on your behalf

Reclaim What's Rightfully Yours

Skip the long hold times and unhelpful agents. Pine fights for what's
rightfully yours.

. Key Capabilities

%, Bill Negotiation: Average 20% savings on telecom, utilities
X Subscription Cancellation: Cancel unwanted services

[Complaint Filing: File formal complaints and get resolutions
& Compensation & Refunds: Recover unauthorized charges

¥ Travel Assistance: Handle bookings and cancellations

270 min

Avg. Time Saved

93% $3M+

Success Rate Saved for Consumers

& Learn more at 19pine.ai

https://19pine.ai/

Overview: Two Fundamental Challenges of Agents

Part I: Real-Time Interaction

Real-time voice agents must respond in <1s like
humans, but traditional architectures introduce 2-10
second delays with reasoning LLMs

VAD Challenges:

= 500-800ms unavoidable wait for silence
= "Uh-huh" mistakenly triggers interruption
= Lost acoustic info (emotions, environment)

ASR Challenges:

= No context - high errors (emails, names)

= No world knowledge - wrong transcription
LLM Challenges:

= Forced to wait, cannot think while listening
= Cannot speak while thinking (5-10s silence)
= Poor turn detection (when to speak/silence)

Part II: Learning from Experience

Models are "intelligent” but not "proficient" — like
top graduates lacking real-world experience

Fixed Models Cannot Learn:

= Cannot learn from successful traces
= Cannot learn from unsuccessful traces
= Parameters frozen after deployment

Big World Hypothesis:
World is too large to pre-encode all knowledge

= Business processes are dynamic & non-public
Verification info varies by company

= Service rules constantly change
Pre-trained knowledge insufficient for deployment

Part I: Real-Time Agent-Environment Interaction

Interaction Targets:

» Humans: Dialogue and collaboration through real-time voice communication.
= Digital World: Operating computers, browsing web pages, using mobile devices.

= Physical World: Controlling robots, interacting with real environments.

A Typical Architecture of Voice Agents

Vg
J N2

1. Perception Layer 2. Thinking Layer
VAD + ASR LLM

N2 N2

Continuous - Discrete Events Async Processing

N2

3. Execution Layer

TTS

-

J

Discrete - Continuous Actions

&

Layer 1: Perception Layer

Transforming Continuous Real-World Signals into Discrete Events

Input

Continuous signals: audio streams

Output

Discrete events: speech_start , interrupt , laugh , speech_fragment , €tcC.

Problems with Traditional VAD + ASR Architecture

VAD (Voice Activity Detection) ASR (Automatic Speech Recognition)
1. Unavoidable Latency 1. Low Accuracy Without Context
Must wait 500-800ms of continuous silence to confirm user finished .

VAD cuts audio into isolated segments
= Cannot use context for disambiguation

. = High errors for: emails, names, phone numbers
2. Poor Interrupt Detection

= Cannot distinguish background noise/music

= "Uh-huh" mistakenly tri i i
uh" mistakenly triggers interruption 2. Lack of World Knowledge

= Cannot leverage common sense

. A = Low accuracy for: addresses, brands, technical terms, amounts
3. Low Voice Detection Accuracy

= Errors in complex acoustic environments

Mid-sentence pauses -> truncation

. Y .) 3. Text-Only Output Lacks Acoustic Details
= "Hello" in background noise - unresponsive

= Lost emotions: happy, frustrated, excited
= Lost paralinguistic: laugh, sigh, breath
= Lost environment: noisy, music, quiet

Streaming Voice Perception Model: Replacing VAD + ASR

Multimodal Architecture Rich Output: Text + Acoustic Events
Model Architecture Text Tokens
1. Audio Encoder (from Whisper) Real-time transcribed text fragments

{ Converts audio - audio tokens

2. Qwen LLM (autoregressive) Special Tokens (Acoustic Events)
{ Processes audio tokens - text + events

<speak_start> <speak_end> Speech boundaries
<interrupt> Interruption intent
<emotion:happy> Emotion markers
Key Advantages r?py . A
<laugh> <sigh> Paralinguistic info

= Streaming: Real-time output (not batch) <music> Environmental sounds

= Context: Full dialogue history preserved

= In-Context Learning: Better recognition for personal info,
domain terms

= World Knowledge: Higher accuracy for addresses, brands,
amounts

Layer 2: Thinking Layer

Event-Driven Loop Enabling Interruptible, Asynchronous Thinking While Listening,
Speaking While Thinking

Input

Discrete event stream of observations (user utterances) and tool call results

Output

Interleaved thoughts, tool calls, and output sentences (for TTS)

Interactive ReAct: Enabling Flexible Interweaving of
Observation, Thinking, and Action

Traditional ReAct: Rigid OTA Loop Interactive ReAct: Flexibly Interleaved OTA
O:1: "I want to lower my Xfinity bill to $79 per month" O1: "I want to lower my Xfinity bill to $79 per month"
Ti: (thinking 5s... then interrupted, all lost) Ti: (fast think 0.5s: user utterance incomplete, wait)
O02: "and I do not want to cut off any features" T2: (thinking 5s... then interrupted)
T2>: (thinking 15s...) 02: "and I do not want to cut off any features"
él: "Got it! Here is a $79 plan with all the T3: (fast think 0.5s: user wants to lower bill to $79)
eatures..."

Ai: "I can help you with that! Let me check the

available plans"
= Fixed Loop: Must complete entire Observation-Thinking-

. Ta: tinui thinking... 10
Action sequence 4: (continuing inking s)
= Thinking Lost: Cannot think while listening, high latency ’;\é;t;ggz it! Here is a $79 plan with all the

= Rigid: Must wait for complete input before thinking
= Think While Listening: New observations insert anytime,
thinking preserved
= Speak While Thinking: Fast response, then continue thinking

= Intelligent Turn Detection: Decide when to speak, when to
stay silent

Interactive ReAct: Think While Listening

Key Insight: LLM is 20-100x Faster Than Human Speech - Use Gap Time to Think!

& LLM Processing Speed ¢ Human Voice Input/Output Speed
= Prefill (Input): 1000+ tokens/sec = Speaking: 5 tokens/sec (text) or 20 tokens/sec (audio tokens)
= Decode (Output): 100 tokens/sec = LLM is 20-100x faster than humans!

Example: Interview Agent with Async Tool Calls While Candidate Speaks

Candidate: My previous role involved building distributed systems...

Think: Distributed systems - need to assess depth. Let me search...

Tool Call: web_search('"candidate distributed systems projects") (async!)

Candidate: ...we handled 10M requests/sec using Kafka and Redis (speaking while tool runs)
Think: Kafka+Redis is solid for high throughput. Continue listening...

Tool Result: GitHub shows 3 open-source projects, 2K+ stars total

Think: Tool result confirms experience! Integrate with what candidate said...

Assistant: That's impressive scale! (<0.5s!)
Tell me about your toughest scaling challenge...

Advantage: Async tools + thinking while listening > no waiting, ultra-fast response

Interactive ReAct: Speak While Thinking

Theory: + Fast & ' Slow - @ Continuous Thinking Using Filler Speech

Three Phases of Thinking

1. Fast (0.5s, 50 tokens)
Quick judgment - immediate response

2. ' Slow (5s, 500 tokens)
Deep analysis - complete answer

3. @& Continuous (interleaved thinking and speaking)
Keep thinking - keep speaking

Key: Use "filler speech" to maintain conversation flow during deep
thinking

Example: Interview Agent Asking Complex Question

Candidate: I'm ready for the technical question.
Think: Complex question, need to formulate carefully

Assistant: Let me ask you a system design question. (=
0.5s)

Think: Need to cover scalability, consistency,
latency... (= 5s)

Assistant: Imagine you're building a global CDN.

Think: Continue - specify the cache invalidation
challenge. ..

Assistant: How would you handle cache invalidation
across
100+ edge servers when content is updated?

Result: Question unfolds naturally sentence-by-sentence, no
awkward silence

Future: Three Stages of AI Agent-Environment Interaction

Real-time Asynchronous Interaction with Environment is Fundamental to Agents

@: Stage 1: Voice B Stage 2: Computer Use & Stage 3: Physical World
Input: Voice Input: Visual (screenshots) Input: Vision+Voice+Tactile
Output: Voice Output: Mouse/keyboard actions Output: Voice+]oint actions

Data Rate: 15-50 token/s Data Rate: -~2K token/frame Data Rate: -~20K token/s

Latency: <500ms Latency: <1 second Latency: <100ms

Challenge: Fast-slow thinking Challenge: Precise action execution Challenge: Real-time control

e Solution: VLA models + RL Solution: VLA + World Models

Solution: Interactive ReAct

Key Insight: Complexity increases (data rate 1, latency V), but architectural solutions transfer across stages

Part II: Agents Learning from Experience

["We want Al agents that can discover like we can, not which contain what we have discovered.” — Richard Sutton

Why Agents Must Learn from Experience: From "Intelligent”
to "Proficient”

® SOTA Models = Top Graduates M Real Challenges in Pine Al

#° Verification Info

Knowledgeable
1st call: learns credit card last 4 digits required
Master vast amounts of general knowledge 2nd call: should proactively request it

[} Service Procedures

X Lack Experience 1st cancellation: told to fill online form instead of phone call
Underperform vs. experienced professionals on specialized tasks 2nd cancellation: should directly fill online form
(e.g., accounting, tax filing)

@" Service Rules
Which discounts apply? (veterans, 2-year loyalty, etc.)

® Price Estimation
Is $60/month for 3Gbps broadband high or low? Room to negotiate?

Core Problem: Many business processes are dynamic and non-public. Simply improving the base model’s general
capabilities cannot solve these "experience-based" problems.

Building Self-Evolving Agents

Making Agents Learn from Experience

Paradigm 1: Post-Training Paradigm 2: In-Context Paradigm 3: Externalized
Learning Learning

Method 1: Post-Training - SFT Memorizes, RL Generalizes

¥ Supervised Fine-Tuning (SFT) & Reinforcement Learning (RL)
Advantages Advantages
= Extremely sample-efficient (thousands suffice) = Learns transferable policy representations
= Quickly solidifies formats and protocols = Robust in out-of-distribution scenarios
= Stable training, fast convergence = Discovers new strategies beyond training data
X Limitations X Limitations
= Memorizes surface patterns = Low sample efficiency (100x more data and compute)
= Cliff-like degradation on out-of-distribution = High training cost and time
= Hard to learn transferable strategies = Requires verifiable reward signals

. Engineering Practice: Form Before Function

= SFT Phase: Establish format stability, ensure parseable outputs

= RL Phase: Break through generalization boundaries on stable foundation
= Key Balance: Train SFT until "format stable, capabilities emerging”

Improving Sample Efficiency (I): On-Policy Distillation
il Three Training Approaches “\ How It Works

SFT (Supervised Fine-Tuning)

» Sampling: Off-policy (teacher's trajectories) trajectory = student.generate(prompt)
= Reward: Dense (token-by-token)
= Problem: Compounding errors in student's states
for token in trajectory:

teacher_logprobs = teacher(token | ctx)
RL (Reinforcement Learning) student_logprobs = student(token | ctx)
= Sampling: On-policy (student's rollouts)
= Reward: Sparse (only final outcome)
= Problem: One signal per episode, inefficient <085 = Mblzaeene || Eeaelize)

@ Key Benefits

= 10x more efficient than RL

On-Policy Distillation

= Sampling: On-policy (student's trajectories)
= Reward: Dense (teacher grades each token)
= Best of both worlds!

= Student learns to recover from its own mistakes
= Canreuse training data (multi-epoch)
= Enables continual learning

Improving Sample Efficiency (II): Feedback-Guided Sampling

X Traditional GRPO/DAPO

Process:

= Generate N independent rollouts

= Later attempts repeat same errors

Rollout 1: Requires SSN - X Failure
Rollout 2: Requires SSN - X Failure
Rollout 3: Requires SSN - X Failure
...(wasting environment feedback)

This is essentially an online learning process:

Feedback-Guided Sampling

Sequential Process:

= Istrollout: From original prompt
= 2nd rollout: Prompt + 1st feedback in context
= Nth rollout: Accumulate feedback from N-1 rollouts

Rollout 1: Requires SSN - X Failure
Rollout 2: [Knows SSN] Prepared - Success
Rollout 3: [Knows SSN] Prepared - Success
...(rapid adaptation within batch!)

~ Result: More high-quality samples per batch

= Externalized Learning: Feedback accumulated in knowledge base after each rollout
= Online RL: Agent adapts its policy based on accumulated feedback within the batch

Method 2: In-Context Learning

. Common Misconception

"With long context, just put all history in and let the model automatically reason”
This is a serious misconception about context capabilities!

& What Context Really Does I. Real Case: Three-Call Limit

Nature: Retrieval, NOT reasoning engine Rule: Max 3 calls to same merchant

Mechanism: Key-value similarity matching (like RAG) Context: Trajectory has multiple Xfinity calls

Good at: Finding relevant information Problem:

X Poor at: Statistical aggregation & counting = Must scan entire trajectory to count

= Easily miscounts - makes 4th call

Even if correct, wastes reasoning tokens

Cost: O(trajectory length) per decision

System Hint: Making Implicit State Explicit

Solution: Pre-aggregate information - Reduce O(n) to O(1) context lookups

. How System Hint Works

<system_hint>
Tool call summary:
- 'phone_call' called 3 times
- Xfinity: 3 times (limit reached)

Constraint check:
- Cannot call Xfinity again
</system_hint>

Benefit:

= Complexity: O(n) » O(1)

= Model uses aggregated info directly
= No scanning or counting needed

] Four Types of System Hints

1. Task Planning

TODO: [] Call customer service
[] Call retention dept

2. Side-Channel Info
[2025-06-25 11:00:20] User message

3. Environment State

Current dir: /home/ubuntu
0S: Ubuntu 24.04

4. LLM-Generated Summary
Conversation summary:

User wants $79 Xfinity plan with all current features

Method 3: Externalized Learning (Knowledge Base)

© NEVER Store Raw Cases Directly in Knowledge Base

Storing raw dialogues/cases without distillation leads to incomplete retrieval and wrong conclusions

&3 Case 1: Cat Counting Problem @ Case 2: Discount Rule Error

Scenario:

100 cases: 90 black cats, 10 white cats (all separate)
Question: "What's the ratio?"

Scenario:

3 cases: Veteran John 4 , Doctor Sarah 3 , Teacher Mike X
Question: "I'm a nurse, discount?”

X Raw Storage Problem: X Raw Storage Problem:

= Top-k=20 retrieves partial cases only

= "Nurse" = "Doctor" > Retrieves Sarah only
= Incomplete sample - Wrong inference

= Cases A, C missed > Wrong inference

Distilled Approach: Distilled Approach:

"Total 100 cats:

"Xfinity discount: ONLY
90 black (90%), 10 white (10%)"

veterans & doctors qualify"

- Single retrieval, accurate! - Complete rule, correct answer!

Active Knowledge Distillation: Compression is Understanding

Core Principle: Invest extra compute now (LLM summarization) - Save reasoning tokens later

. Why Distillation? il Three Levels of Knowledge Distillation
X Raw trajectory (3 calls): 1. Statistical Aggregation

10:00 Call Xfinity (billing) 100 cases - 1'90% black, 10%'white"

10:30 Call Xfinity (transfer) Reduce density, improve retrieval

11:00 Call Xfinity (negotiate)

Model must scan O(n) to count 2. Rule Distillation
3 cases - "Only veterans & doctors"
Leap from cases to abstract rules
After distillation:

"Called Xfinity 3 times (limit)" 3. Structured Knowledge Extraction

0(1) lookup, instant recognition * RAPTOR: Tree §ummaries
» GraphRAG: Entity networks

Summary: 3 Paradigms of Agent Continual Learning

Paradigm 1: Post-Training Paradigm 2: In-Context Learning

Core Finding: SFT memorizes, RL generalizes Core Insight: Context # Memory

= SFT: Solidifies formats and protocols, high sample = Nature: attention is similar to RAG
efficiency .

Methods: system hints, explicit summarization
= RL: Learns transferable strategies, out-of-distribution
robust

Paradigm 3: Externalized Learning

3.1 Knowledge Base 3.2 Tool Generation

Advantages: leverages extra compute for knowledge extraction = Advantages: Codifies processes, efficient, reliable, composable
Methods: contextual retrieval, RAPTOR hierarchical summaries = Philosophy: Minimal predefinition + Maximum self-evolution
(Alita)

Summary: Self-Evolving Real-Time Agents

Part I: Real-Time Interaction Part II: Learning from Experience
Think While Listening, Speak While Thinking Learn While Acting
X Problem X Problem
Serial architecture: VAD waits - ASR transcribes - LLM thinks - TTS Fixed models cannot learn from experience after deployment
speaks Big world: business processes are dynamic & non-public
Solution Solution
= Perception: Streaming model produces context-aware transcription = Post-Training: Learn from interactions via RL

and acoustic events = In-Context: Aggregate info via system hints

» Thinking: Event-driven, can think while listening and speaking = Externalized: Distill knowledge, generate tools

Example: Telecom Plan Query - No Awkward Silence
0 "Should I order this plan?"
T1 (fast 0.5s) Need more time

Example: Credit Card Verification
1st call: X Doesn't have last 4 digits of credit card
Learn: Store "Xfinity needs last 4..."
A1 "Let me check the details..." 2nd call: Proactively requests it

T2 (slow 5s) Analyze plan... - Experience-based improvement with high sample
A2 "Yes, saves $30/month!" efficiency

"We want Al agents that can discover like we can, not which contain what we have discovered." — Richard Sutton

Thank You!

Self-Evolving Real-Time Agents

[. Think While Listening } [@: Speak While Thinking } [@ Learn While Acting]

Bojie Li

4 Pine Al

Al Agent that makes calls and uses computers to get things done
Your personal assistant to contact customer service on your behalf

& Lower bills X Cancel subscriptions [] File complaints &3 Get refunds

Powered by () Slidev

https://19pine.ai/
https://sli.dev/

