

Agenda

01 Skills — organizational expertise packages

02 Context Engineering Framework — four pillars
03 Context Window & Context Rot

04 Tool Design Best Practices

05 Claude Agent SDK

06 Subagent Configuration

07 MCP (Model Context Protocol)
08 Evaluations

09 Building Coding Agents

10 Ecosystem Collaboration

Core Problem: Why Context Engineering?

Claude is smart — intelligence is not the bottleneck. Context is.

Organizations have unique workflows, procedures, and institutional knowledge that Claude does not know about.

Claude does not know: Current solutions fall short:

« How your team structures reports » Prompts are ephemeral instructions

* Your brand guidelines and templates « Custom agents require building infrastructure
« Your compliance procedures » Context management is challenging

« Your data analysis methodologies

Part I: Skills

What are Skills?

Skills are organized folders of instructions, scripts, and resources that Claude can discover and load dynamically. Think of them as "expertise
packages."

Type 01: General capabilities Type 02: Workflows & best practices
Claude is not good at out of the box (yet) An org’s / vertical’s / individual’s workflows

e.g. creating PDFs, Excel, & PowerPoint files e.g. Anthropic's brand styling

How Skills work — a simple directory

Skill is a directory containing SKILL.md file.

» Metadata: File starts with name and description

 Preloaded: Agent pre-loads name/description into system prompt
« Efficient: Claude only reads more when needed

« Discovery: Claude navigates and discovers detail as needed

« Executable Scripts: Token efficient, deterministic reliability

pdf /SKILL.md

name: pdf
description: PDF toolkit for extracting
text/tables, merging/splitting, forms

Overview

PDF processing with Python libraries.
For advanced: "/reference.md'

For forms: /form.md

Quick Start
from pypdf import PdfReader
reader = PdfReader('document.pdf')

Progressive disclosure

anthropic/brand_styling/SKILL.md anthropic/brand_styling/slide-decks.md
name: Anthropic Brand Style Guidelines ## Anthropic Slide Decks
description: Brand identity resources for presentations Intro/outro: bg '#141413', fg oat

Section: bg '#da7857', fg '#141413'
Colors
Dark: '#141413' - Primary text
Light: '#faf9f5' - Light backgrounds
Light Gray: '#c8c6dc' - Subtle backgrounds

anthropic/brand_styling/docs.md

Documents
Workflows Start.w1th title, auth?rs, cr?atlon date '
Presentations - './slide-decks.md® If using GDocs tabs, title main doc accordingly

Documents - ./docs.md’ . .
Claude reads only what's needed: slide-decks.md for presentations,

docs.md for documents

Skills work in all our products

Apps
» Best for: automatically invoked, user
experience

» Foundational Skills: professional
documents and analysis

» Custom SKkills: users create, manage, share

Developer Platform

» Best for: programmatic distribution
» Deploy SKkills: via Code Execution API

» Foundational or Custom: core or custom
skills

Claude Code

« Best for: developer workflows

» Auto-invoked: Claude loads automatically
(vs slash commands)

* Runs in local dev environment
« Install via Plugins or “~/.claude/skills’

» Marketplace: distributed via plugin
marketplace

Skills best practices

Naming and descriptions

« Use gerund form: “processing-pdfs’

« Avoid vague names (‘helper’, “utils")

* Include what it does AND when to use
* Be declarative: "Processes Excel files"

* Avoid: "I can help you..." or "You can use this
to..."

File organization

« Keep SKILL.md under 500 lines
» Split when approaching limit
« Keep references one level deep

« Structure longer files (>100 lines) with TOC

Content quality

« Use consistent terminology
» Show concrete input/output pairs

» Examples align with desired behaviors

Skills examples

01
Code Security Agent

05

Financial Reporting Agent

02 03
Code Review Agent Contract Review Agent
06 07
Email Automation Agent Invoice Processing Agent

Built with Claude Agent SDK

04
Meeting Summary Agent

Part II: Context Engineering Framework

Context Engineering — Four Pillars

The discipline of optimizing the utility of tokens against the inherent constraints of LLMs

System prompt Tools Data retrieval Long horizon

» Minimal, precise instructions » Self-contained, no overlap « JIT Context » Compaction strategy

« "Say less, mean more" « "Every tool earns its place” « "Load what you need, when » Structured note-taking
« Structured sections « Explicit parameters & concise you need it" « Sub-agent architecture
« Right altitude (not too rigid, descriptions * Balance pre-loading vs

not too vague) « Clear success/failure patterns dynamic fetching

» Don't send the library. Send a
librarian.

Data retrieval paradigm shift

0O1d approach: Pre-Loading (Traditional RAG) — Load all potentially relevant data upfront

New approach: Just-In-Time

Lightweight identifiers

« Pass IDs, not full objects
» Agent requests details if needed

» Example: ‘user _id: "12345"" - agent calls
‘get_user()" - Full profile

Progressive disclosure

» Start with summaries
 Agent drills down as needed

» Example: File list - File metadata - File
contents

Autonomous exploration

» Agentic Search: Give discovery tools, not
data dumps

» Agent navigates information space

« Example: ‘search_docs()" +
‘read_doc(level)® vs loading all

Three strategies for long-horizon tasks

When tasks exceed context window capacity

Compaction

» Periodically summarize and compress
history

» Reset context with compressed summary

» Trade: Minor detail loss for continued
operation

« Example: "User wants X, tried Y, learned Z"

Structured memory

» Explicit memory artifacts (external
storage)

« Store decisions, learnings, state
* Retrieved on-demand

« Example: Decision log, key findings doc

Sub-Agent architectures

» Decompose into specialized agents
« Each has focused, narrow context
» Main agent orchestrates

« Example: Code-review spawns doc-
checker

Part III: Context Window & Context Rot

Context Window & Context Rot

Context window

All frontier models have a maximum number of total tokens able to
be processed in a single exchange.

Anthropic’s context window is 200k tokens.

Context rot
As context grows, output quality can regress.

Reasons:

01. Poisoning — incorrect/outdated info
02. Distraction — irrelevant info

03. Confusion — similar info mixed

04. Clash — contradictory info

Chroma Report: Context-Rot: How Increasing Input Tokens Impacts
LLM Performance

Prompt caching & Benefits

Effectively building and maintaining context will:
Prompt caching is a lever for cost & latency

» Handle context window limits - Reliability

» Reduce context rot > Accuracy

Prompt caching success is highly correlated with structure of context « Optimize for prompt caching - Cost & latency

Part IV: Tool Design Best Practices

Elements of strong tool design

» Simple & accurate tool name

{
« Detailed descriptions — Include what the tool returns, how it should be name': "search customers',
used description': "Search customer database by
name, email, or ID.",

» Avoid similar names/descriptions input_schema': {
« Single action per tool — at most 1 level of nested parameters type’: "object’,

properties”: {
 Provide examples — expected input/output format query': {
« Pay attention to results format type Sftrmg ’

description': "Search term

« Test your tools — make sure agents use them well 3,

max_results': {
type': "integer",
default": 10
3
3>

required": ["query']

Part V: Claude Agent SDK

Claude Agent SDK architecture

Built on the agent harness that powers Claude Code, providing all building blocks for production-ready agents.

()

Application / Platform

Core capabilities:

Claude Agent SDK
« Tools: Read/write files, code execution, web search, MCP, Skills
Harness
» Permissions: Human confirmation, fine-grained, allow/deny lists
Tools Prompts File System
» Production: Session management, error handling, monitoring
Bhancements:
Claude Sonnet Claude Opus « Subagents, Web Search, Research Mode
L) * Auto Compacting, Multi Stream, Memory

SDK philosophy

Claude Code — Delegate everyday dev work Claude Agent SDK — Extend to custom agents

By giving Claude access to the user’s computer (via terminal), it can write The Claude Code principle can be extended to agents in general.

code like a programmer.
* Read CSV files, Search the web
« Find files, Write & edit files

* Test & Debug

« Build visualizations, etc.

« Take actions iteratively Key Design Principle: Claude Agent SDK gives your agents a computer,

allowing them to work like humans do

Claude Code Toolkit

Tool Description Permission
Agent Runs a sub-agent for complex, multi-step tasks No

Bash Executes shell commands Yes

Edit / MultiEdit Targeted edits to files (atomic) Yes

Glob / Grep /LS Find files, search patterns, list directories No
NotebookEdit / NotebookRead Jupyter notebook operations Yes /No
Read / Write Read and write files No/ Yes
TodoRead / TodoWrite Task list management No

WebFetch / WebSearch Fetch URL content, web search with domain filtering Yes

Best agentic frameworks

« Do not overly scaffold the models
« Allow for tuning all key parts of the system (Context Engineering)

» Leverage all model capabilities (Extended & Interleaved Thinking, Parallel Tool Calling, etc)

« Provide access to memory
» Enable multi-agents, where valuable

» Have robust agent permissioning

Part VI: Subagent Configuration

Subagent configuration best practices

Description field Tool permissions

» Critical for auto-invocation » Limit tools to what each subagent needs

» Make specific and action-oriented » Example: code-reviewer gets ‘Read, Grep, Glob®
« Use "PROACTIVELY" or "MUST BE USED" but not “Write" or "Edit’

» e.g. "Use PROACTIVELY when code changes
might impact performance”

Model selection

« Use ‘inherit’ to match main conversation
« Specify ‘sonnet’, ‘opus’, or “haiku®

e Default is “sonnet’ if omitted

Native subagent orchestration

Managing context limits

* When context window clears, consider starting fresh rather than
compacting

» Prompt around early compaction
« Be prescriptive about how it should start
» Provide verification tools

« Claude needs to verify correctness without continuous human feedback

For optimal research results

» Provide clear success criteria
» Encourage source verification across multiple sources

« Use a structured approach for complex research

Part VII: MCP (Model Context Protocol)

What is MCP?

Chat interface
Claude Desktop, LibreChat

IDEs and code editors
Claude Code, Goose

Other Al applications

Sire, Superinterface

MCP
Standardized protocol

© Bidirectional data flow ¢

Data and file systems
PostgreSQL, SQLite, GDrive

Development tools
Git, Sentry, etc.

Productivity tools
Slack, Google Maps, etc.

Where is MCP heading?

Last spec (June 2025) focused on structured tool outputs, OAuth authorization, elicitation for server-initiated interactions, and security best practices
1. Asynchronous operations
2. Statelessness and scalability

3. Server identity and discovery

Part VIII: Evaluations

Evaluations — Tips

Good evals:

» Measure performance and regressions

« User-centric, cover full range of expected behaviors
« Consider edge cases and risks

» Have buy-in from multiple stakeholders

» Have a target

« Use existing benchmarks if available

Important:

» Negative examples are extremely important — they define the boundary
and prevent over-triggering

« The "harder" negative examples = higher quality feature

» Brainstorm (with others or Claude) how the model might over-apply your
feature

Great evals:

Can be graded objectively and programatically

Evaluations — Types

Eval type

Intelligence Benchmarks
Capability Benchmarks
Behavioral Evals

Safety evals

Product Evals

Description

General intelligence

Specific capability (coding, math)
Particular model behaviors
Threat analysis, red teaming

Task in product context

Used for

Model comparison, launch decisions
Model positioning

Monitor/improve behaviors

Safety perspective

Product decisions

Examples

MMLU, GPQA

MATH, HumanEval, SWE-Bench, Tau-bench
Refusals, Hallucinations, "Certainly!"
Redteaming Computer use

Artifacts, Multimodal PDFs

Evaluations — Grading & Iteration

Grading process:

1. Determine Baseline — Run prompts with current production config,
record output

2. Outline Expected Behavior — For positive and negative examples

3. [Optional] Grading — Build a grader (exact match, regex, or model-
based). Run on baseline: negatives score well, positives don't (until your
change)

Automate and iterate:

» The faster you can run your eval, the more easily you can iterate
» Tooling: Anthropic Console, custom script/notebook, custom tools
» Feature iteration: change system prompt, tool definitions

« Eval iteration: add use-cases for unexpected behaviors

Examples of evals for agents

Answer accuracy — LLM judges correctness Tool use accuracy — Correct tool selection

» User: How many employees started in 2023? « User: Book a flight to Paris tomorrow

» Agent: query_employees(hired year=2023, status="active") » Agent: search_flights(date="tomorrow")

» Tools: {"count": 47,...} * Tools: {"error": "Invalid date format"}

» Agent: 47 employees. Engineering (23), Sales (15), Ops (9). » Agent: search_flights(departure date="2024-05-19")

* LLM Judge: CORRECT — Score: 10/10 Pass: Recovered from error

t-bench — Agent reaches correct final state (e.g., flight cancellation flow with user interruption)

Tips for evaluating agentic systems

» The larger the effect size, the smaller the sample size needed: Starting out, you just need a few test cases. Each change will have substantial,
noticeable impact.

« Use realistic tasks: Evaluate on tasks real users might use, with clear correct answers findable using available tools.

» LLM-as-judge with a rubric is very powerful: LLMs are strong judges if given a clear rubric aligned with human judgements.

» Nothing replaces human evals: Bashing + vibe checking, and testing with real users — humans find the rough edges!

Part IX: Building Coding Agents

What we learned about building coding agents

Key insights: Agents also need:

« Everything is a File * Memory

« Bash is the ultimate tool » Sub Agents & Collaboration

» Most toolcalls are just code
« Agentic Search > RAG

» Dynamic Tool Calls
» Code Generation & Execution
» Web Search / Agentic Search

» Long Running Tasks

Part X: Ecosystem Collaboration

The ecosystem — How they work together

Feature

Provides

Persistence

Contains

Can contain code

When loads

Best for

Prompts
Instructions

Single conversation
Natural language
No

Each turn

Quick requests

MCP

Tool connectivity
Continuous

Tool definitions
Yes

Always available

Data access

Skills

Procedural knowledge
Across conversations
Instructions + code
Yes

Dynamically

Specialized expertise

Subagents

Task delegation
Across sessions
Full agent logic
Yes

When invoked

Specialized tasks

Example workflow & Matching tools

Example agentic workflow:

1. MCP connects to Google Drive and GitHub
2. Skills provide analytical framework (competitive analysis)
3. Subagents execute in parallel (market-researcher, technical-analyst)

4. Prompts refine and provide specific context

Matching the right tool to use case:

*» Procedural knowledge needed repeatedly - Skill
» Access to external data sources > MCP
» Independent execution with separate context - Subagent

« Complex workflow - combine all three

Context Engineering from Claude

Claude is smart enough — the key to success is giving it the right context.

From Anthropic team presentations at AWS re:Invent 2025

Powered by) Slidev

https://sli.dev/

