
AI Agent 实战营
Bojie Li

《图解大模型》、《图解 DeepSeek 技术》译者

Pine AI 联合创始人、首席科学家

Press Space for next page

开发一个属于你的 AI Agent，就从这里开始

实战营核心目标

🎯 掌握核心架构与工程能力
深度理解 Agent 架构: 系统掌握 LLM + 上下文 +

工具 的核心设计范式。

精通上下文工程: 掌握从对话历史、用户长期记忆

到外部知识库 (RAG) 和文件系统的多层次上下文管

理技术。

掌握动态工具调用: 实现 Agent 与外部 API、MCP

Server 的可靠集成，并能通过代码生成实现自我进

化。

构建高级 Agent 模式: 设计与实现快慢思考

(Mixture-of-Thoughts)、Orchestration 等复杂

Agent 协作模式。

💡 建立系统化开发与部署认知
理解技术演进路径: 洞悉从基础 RAG 到能够自主开

发工具的 Agent 的技术演进路径。

掌握 Agent 全生命周期: 具备独立完成 Agent 项目

的设计、开发、(使用 LLM as a Judge) 评测与部署

的闭环能力。

构建领域知识: 通过法律、学术、编程等多个实战

项目，积累跨领域 Agent 开发经验。

知识体系沉淀: 参与共创《深入浅出 AI Agent》书

籍，将碎片化知识系统化输出。

开发一个属于你的 AI Agent，就从这里开始

9 周实战计划：构建你的通用智能体
周次 主题 内容概览 实战案例

1 Agent 入门 Agent 结构与分类、工作流式 vs 自主式 动手搭建一个能联网搜索的 Agent

2 上下文设计 Prompt 模版、对话历史、用户长期记忆 为你的 Agent 增加角色设定和长期记忆

3 RAG 与知识库 文档结构化、检索策略与增量更新 构建一个法律知识问答 Agent

4 工具调用与 MCP 工具封装与 MCP 接入、外部 API 调用 对接 MCP Server，实现深度调研 Agent

5 编程与代码执行 代码库理解、可靠的代码修改、一致的执行环境 构建一个能自己开发 Agent 的 Agent

6 模型评估与选择 模型能力评估、LLM as a Judge、安全护栏设计 构建评测数据集，用 LLM as a Judge 自动评测 Agent

7 多模态与实时交互 实时语音 Agent、操作电脑与手机 实现语音电话 Agent & 集成 browser-use 操作电脑

8 多 Agent 协作 A2A 通信协议、Agent 团队分工与协作 设计多 Agent 协作系统，实现"边打电话边操作电脑"

9 项目集成与展示 Agent 项目总装与展示、最终成果打磨 展示你独一无二的通用 Agent

9 周进阶课题
周次 主题 进阶内容概览 进阶实战案例

1 Agent 入门 上下文的重要性 探索上下文缺失对 Agent 行为的影响

2 上下文设计 用户记忆的整理 构建个人知识管理 Agent，实现长文本总结

3 RAG 与知识库 长上下文压缩 构建学术论文分析 Agent，总结论文核心贡献

4 工具调用与 MCP 从经验中学习 增强深度调研 Agent 的专家能力 (Sub-agent 与领域经验)

5 编程与代码执行 Agent 的自我进化 构建能自主利用开源软件解决未知问题的 Agent

6 模型评估与选择 并行采样与顺序修订 为深度调研 Agent 增加并行与修订能力

7 多模态与实时交互 快慢思考结合 实现快慢思考结合的实时语音 Agent

8 多 Agent 协作 Orchestration Agent 用 Orchestration Agent 动态协调电话与电脑操作

9 项目集成与展示 Agent 学习方式对比 对比 Agent 从经验中学习的四种方式

Week 1: Agent 入门

核心内容

Agent 的结构与分类

工作流式 (Workflow-based)

预定义流程与决策点

确定性高，适合简单业务流程的自动化

自主式 (Autonomous)

动态规划与自我修正

适应性强，适合开放式研究与探索、解决复杂问

题

基础框架与场景判断

ReAct 框架: 观察 → 思考 → 行动

Agent = LLM + 上下文 + 工具

LLM: 决策核心 (大脑)

上下文: 感知环境 (眼睛与耳朵)

工具: 与世界交互 (双手)

Week 1 · 实战案例
动手搭建一个能联网搜索的 Agent

目标: 构建一个基础的自主式 Agent，能够理解用户问题，通过搜索引擎获取信息，并总结出答案。

核心挑战

任务分解: 将复杂问题分解为可搜索的关键词。

工具定义: 定义并实现一个 web_search 工具。

结果整合: 理解搜索结果，并综合信息生成最终答

案。

架构设计

需要搜索 信息充足

用户问题

LLM 思考

调用 web_search 工具

搜索引擎 API

返回搜索结果

生成最终答案

Week 1 · 进阶内容
上下文的重要性：Agent 的操作系统

核心理念: The context is the agent's operating system. 上下文是 Agent 感知世界、做出决策、记录
历史的唯一依据。

思考 (Thinking)

Agent 的内心独白和推理链。

缺失后果: 导致 Agent 行为黑盒，无法调

试和理解其决策过程。

工具调用 (Tool Call)

Agent 决定采取的行动，记录其意图。

缺失后果: 无法追踪 Agent 的行为历史，

难以复盘。

工具结果 (Tool Result)

行动带来的环境反馈。

缺失后果: Agent 无法感知其行为的后果，

可能导致无限重试或错误规划。

Week 1 · 进阶实践
探索上下文缺失对 Agent 行为的影响

目标: 通过实验，理解 thinking , tool call , tool result 各部分在 Agent 工作流中不可或缺的作用。

核心挑战

修改 Agent 框架: 修改 Agent 的核心循环，选择性

地从上下文中移除特定部分。

设计对比实验: 设计一组任务，在这些任务中，缺

失不同上下文的 Agent 会表现出明显的行为差异甚

至失败。

行为分析: 分析并总结不同上下文缺失分别导致了

哪种类型的失败。

实验设计

任务

完整上下文 Agent 无 Tool Call Agent 无 Tool Result Agent

成功 行为异常/难以理解 无限重试/错误规划

Week 2: 上下文设计 (Context Engineering)

核心内容

Prompt 模版

系统提示词: 设定 Agent 的角色、能力边界和行为

准则。

工具集: 工具的名字、说明、参数。

对话历史与用户记忆

事件序列: 将对话历史建模为 "观察" 与 "行动" 的交

替序列。

用户长期记忆: 将对话中用户的关键信息（如偏

好、个人信息）提取并结构化保存，用于未来的交

互。

Week 2 · 实战案例
为你的 Agent 增加角色设定和长期记忆

目标: 提升 Agent 的个性化与连续服务能力。Agent 需要能模仿特定角色（如动漫人物）的风格说话，并能记住
用户的关键信息（如姓名、兴趣），在后续对话中应用这些记忆。

核心挑战

角色扮演: 如何在 Prompt 中清晰地定义角色的语言

风格和个性，并让 Agent 稳定地保持人设。

记忆提取与存储: 如何从非结构化的对话中，准确

提取关键信息并存为一个结构化的 JSON 对象。

记忆应用: 如何将存储的用户记忆 JSON 自然地融入

到后续对话的 Prompt 中，让 Agent 看起来真的"记

住"了用户。

架构设计

上下文构建

注入 注入 注入

提取关键信息

用户输入

LLM 思考

角色设定 Prompt 对话历史 用户记忆 JSON 生成角色化回复

更新用户记忆 JSON

Week 2 · 进阶内容
用户记忆的整理

核心理念: 简单的记忆拼接会导致上下文膨胀、信息冲突和过时。高级的记忆系统需要在后台对用户的长期记忆
进行持续的整理、去重、修正和总结，形成一个动态演进的用户画像。

实现策略

记忆去重与合并: 识别并合并内容相似或重复的记

忆条目。

冲突解决: 当新的记忆与旧的记忆发生冲突时（如

用户更改了偏好），以最新的信息为准。

定期总结: 定期或在后台空闲时，使用 LLM 对零散

的记忆点进行总结，提炼出更高层次的用户偏好和

特征。

架构设计

Week 2 · 进阶实践
将你的日记总结成个人报告

目标: 构建一个能够处理大量个人文本（如每日日记、博客文章）的 Agent，通过对这些文本的阅读和整理，最
终生成一篇详尽、清晰的个人总结报告。

核心挑战

长文本处理: 如何处理总量可能超过 LLM 上下文窗

口的日记/文章。

信息提炼与结构化: 如何从叙事性的文本中，提取

出结构化的信息点（如关键事件、情绪变化、个人

成长）。

连贯的总结生成: 如何将零散的信息点，组织成一

篇逻辑连贯、可读性强的总结报告。

架构设计

读取全部结构化记忆

批量日记/文章

分篇读取

信息提取 Agent

结构化记忆库

用户指令: '生成总结'

报告生成 Agent

生成个人总结报告

Week 3: RAG 系统与知识库

核心内容

文档结构化与检索策略

Chunking: 将长文档切分为有意义的语义块。

Embedding: 将文本块向量化，用于相似度检索。

混合检索: 结合向量相似度与关键词检索，提高召

回率与精确度。

重排序 (Re-ranking): 使用更复杂的模型对初步检

索结果进行二次排序。

基础 RAG

知识表达: 使用清晰、结构化的自然语言表达知

识。

知识库构建: 将文档处理并载入向量数据库。

精准检索: 根据用户问题，精准定位知识库中的相

关条目。

Week 3 · 实战案例
构建一个法律知识问答 Agent

目标: 让 Agent 成为一个专业的法律顾问。我们将使用公开的中国刑法/民法数据集构建一个知识库，使 Agent 能
够准确回答用户的法律问题，并明确指出答案所依据的具体法条。

核心挑战

领域数据处理: 如何解析和清洗结构化的法律条文

数据，并优化其在 RAG 系统中的检索效果。

答案的精确性与溯源: Agent 的回答必须严格基于

知识库内容，避免自由发挥，并且必须提供法条来

源。

处理模糊查询: 如何引导用户提出更明确的问题，

以匹配到最相关的法律条文。

架构设计

检索返回相关法条

下载法律数据集

数据清洗与分块

构建向量知识库用户法律问题

LLM + RAG Agent

生成答案并引用法条

Week 3 · 进阶内容
将文件系统作为终极上下文
核心理念: Treat the file system as the ultimate context. Agent 不应将巨大的观测结果（如网页、文
件内容）直接塞入上下文，这会导致成本高昂、性能下降且有窗口限制。正确的做法是，将这些大数据存入文
件，只在上下文中保留一个轻量的"指针"（摘要和文件路径）。

实现策略

可恢复压缩: 当工具返回大量内容时（如

read_file ），先将其完整保存到沙箱的文件系

统中。

摘要与指针: 只将内容的摘要和文件路径追加到主

上下文中。

按需读写: Agent 通过 read_file 工具，可以在

后续步骤中按需从文件系统读取完整内容。

架构设计

Week 3 · 进阶实践
构建一个能阅读多篇论文的 Agent

目标: 训练一个学术研究 Agent，它能够阅读一篇指定的论文及其所有的参考文献（通常是几十篇 PDF），并在
此基础上，总结出该论文相比于其参考文献的核心贡献与创新点。

核心挑战

海量 PDF 处理: 如何高效地解析数十篇 PDF 论文，

并提取关键信息（摘要、结论、方法论）。

跨文档关联分析: 核心挑战在于，Agent 需要在主

论文和多篇参考文献之间建立关联，进行比较分

析，而不是简单地总结单篇论文。

贡献点提炼: 如何从复杂的学术论述中，精准地提

炼出论文的"增量贡献"。

架构设计

Week 4: 工具调用与 MCP

核心内容

多种工具封装方式

函数调用 (Function Calling): 将本地代码函数直

接暴露给 Agent。

API 接入: 调用外部 HTTP API，获取实时数据或执

行远程操作。

Agent as a Tool: 将一个专有 Agent (如代码生成

Agent) 封装为另一个 Agent 可调用的工具。

MCP (Model Context Protocol)

标准化接口: 为模型与外部工具/数据源提供一个统

一、语言无关的连接标准。

即插即用: 开发者可以发布符合 MCP 规范的工具，

Agent 可以动态发现并使用它们。

安全与隔离: 内置权限和沙箱机制，确保工具调用

的安全性。

Week 4 · 实战案例
对接 MCP Server，实现深度调研 Agent

目标: 构建一个能进行深度信息调研的 Agent。它需要能连接到多个符合 MCP 规范的外部工具服务器，并能自主
规划、调用这些工具来完成一个复杂的调研课题。

核心挑战

权威信息源识别: Agent 需要在海量信息中，精准

识别并采纳官方文档、学术论文等高可信度的信息

源。

多工具协同: 如何规划一个调用链，让多个工具

（如先搜索、再读取、再分析）的输出/输入串联起

来，形成完整的工作流。

开放式问题探索: 如何处理没有唯一答案的开放式

问题，进行多角度的探索性搜索并汇总结果。

架构设计

连接

规划调研步骤

调用工具 整合信息

用户调研课题

调研主控 Agent

MCP 工具网关

Web Search MCP Server Context7 MCP Server ...其他 MCP Server

生成调研报告

Week 4 · 进阶内容
从经验中学习：越做越熟练

核心理念: 真正的智能体不仅要会使用工具，更要能从使用工具的经验中学习和进化。它应该能记住成功解决某
类任务的"套路"（即 Prompt 模板和工具调用序列），并在未来遇到相似任务时直接复用。

实现策略

经验存储: 当一个复杂任务成功完成后，Agent 会

将整个过程（包括用户意图、思考链、工具调用序

列、最终结果）作为一个"经验案例"存入知识库。

经验检索: 面对新任务时，Agent 首先在经验库中

搜索相似案例。

经验应用: 如果找到相似案例，Agent 会将该案例

的成功策略作为高级指导，而不是每次都从零开始

思考。

架构设计

检索相似经验

找到成功案例

应用经验

任务成功

新任务 Agent

经验知识库

任务执行

保存新经验

生成结果

Week 4 · 进阶实践
增强深度调研 Agent 的专家能力

目标: 针对深度调研中的复杂场景，为 Agent 赋予专家级的处理能力。例如，在调研"OpenAI 的联合创始人"时，
能自动为每一位创始人启动一个并行的子调研 Agent；在搜索人物信息时，能有效处理重名问题。

核心挑战

加载领域经验: 如何根据任务类型（如"学术调研"

vs "人物调研"），加载不同的经验知识，指导

Agent 使用最合适的权威信息源和 Prompt 策略。

动态 Sub-agent: 如何让主 Agent 根据初步搜索结

果，动态地创建多个并行的子 Agent 来分别处理子

任务。

歧义消解: 在处理人物搜索等易产生歧义的场景

时，如何设计澄清和验证机制。

架构设计

加载'人物调研'经验 初步搜索 返回创始人列表 为每个人启动 Sub-agent ...

调研OpenAI cofounders

Agent

经验知识库 搜索引擎 Sam Altman 调研 Agent Greg Brockman 调研 Agent

结果汇总

生成最终报告

Week 5: 编程与代码执行

代码 Agent 的核心挑战

代码库理解:

如何从大代码库中查找相关代

码（语义搜索）？

如何准确查询代码中函数的所

有引用点？

可靠的代码修改:

如何可靠地将 AI 生成的 diff

应用到源文件 (old_string

-> new_string)？

一致的执行环境:

如何保证 Agent 每次执行命令

都在同一个终端会话中 (继承

pwd , env var 等)？

如何为 Agent 的执行环境预先

配置好所需的依赖和工具？

Week 5 · 实战案例
构建一个能自己开发 Agent 的 Agent

目标: 打造一个 "Agent 开发工程师" Agent。它能接收一个高层级的自然语言需求（例如："开发一个能上网搜索
的 Agent，前端使用 React + Vite + Shadcn UI，后端使用 FastAPI…"），然后自主完成整个应用的开发。

核心挑战

文档驱动开发: 如何让 Agent 先为要开发的应用撰

写设计文档，并严格遵循该文档进行后续代码实

现。

测试驱动开发: 如何确保 Agent 为其生成的每一段

代码都编写并执行测试用例，保证最终交付应用的

质量和正确性。

开发和测试环境: Agent 需要有良好的开发和测试

环境，才能自主执行测试用例，发现 bug，进而修

复 bug。

架构设计

prompt: 开发一个搜索
Agent

开发工程师 Agent

创建 TODO List

执行: vite create

...编码 & 调试...

完成

Week 5 · 进阶内容
Agent 的自我进化：自主开发工具
核心理念: Agent 能力的终极形态是自我进化。当面对一个现有工具无法解决的问题时，一个高级 Agent 不应该
放弃，而应该利用其代码编写能力，为自己创造一个新工具。

实现策略

能力边界识别: Agent 首先需要判断当前问题是否

超出了其现有工具集的能力范围。

工具创造规划: Agent 规划出新工具的功能、输

入、输出，并搜索开源代码库（如 GitHub）寻找可

用的实现。

代码封装与验证: Agent 将找到的代码封装成一个

新的工具函数，并为其编写测试用例，在沙箱中验

证其正确性。

架构设计

现有工具无法解决

验证通过

新问题

Agent

搜索 GitHub

找到并下载相关代码

封装为新工具

沙箱中验证

加入工具库

Week 6: 大模型的评估和选择

核心内容

评估大模型的能力边界

核心能力维度: 智力、知识量、幻觉、长文本、指

令遵循、工具调用。

构建有区分度的测试用例: 设计 Agent-centric 的评

测集，而非简单的 Chatbot 问答。

LLM as a Judge: 使用一个强大的 LLM (如 GPT-

4.1) 作为"裁判"，来自动化地评估和比较不同模型

或 Agent 的输出质量。

为大模型装上安全护栏

输入过滤: 防止恶意提示词注入。

输出过滤: 监测并拦截不当或危险的输出内容。

人工介入: 在高风险操作前，引入人工确认环节

(Human-in-the-loop)。

成本控制: 监控 token 消耗，设置预算限制，防止

滥用。

Week 6 · 实战案例
构建评测数据集，用 LLM as a Judge 自动评测 Agent

目标: 为我们前几周构建的深度调研 Agent，系统性地构建一个评测数据集。然后，开发一个自动化的测试框
架，使用 LLM as a Judge 的方法，评测不同"大脑"（如 Claude 4 vs Gemini 2.5）以及不同策略（如打开/关闭思
考链）对 Agent 性能的影响。

核心挑战

评测数据集设计: 如何设计一组既有代表性又能覆

盖各种边界情况的调研任务？

"裁判" Prompt 设计: 如何设计给 "LLM Judge" 的

Prompt，才能让它公平、一致、准确地对 Agent 的

输出进行打分？

结果的可解释性: 如何从自动评测的结果中，分析

出不同模型或策略的优劣势所在。

架构设计

被评测 Agent

评测任务集

自动化评测框架

调研 Agent (Claude 4, with
thinking)

调研 Agent (Claude 4, no
thinking)

调研 Agent (Gemini 2.5,
with thinking)

Agent 输出结果

LLM as a Judge

生成量化评分与分析

Week 6 · 进阶内容
并行采样与顺序修订

核心理念: 模拟人类的"集思广益"与"反思修正"过程，以应对复杂和开放性问题，提升 Agent 输出的质量和鲁棒
性。

并行采样 (Parallel Sampling)

思路: 同时启动多个 Agent 实例，使用略微不同的

Prompt 或更高的 temperature，从多个角度并行探

索解决方案。

优势: 增加找到最优解的概率，避免单一 Agent 的

思维局限。

实现: 类似 Multi-Agent，但目标是解决同一问题，

最后通过评估机制（如 LLM as a Judge）筛选出最

佳答案。

顺序修订 (Sequential Revision)

思路: 让 Agent 对自己的初步输出进行自我批判和

修正。

流程: 初始响应 → 自我评估 → 识别问题 → 生成改

进 → 最终输出。

优势: 提升单次任务的成功率和答案的深度，实现

自我优化。

Week 6 · 进阶实践
为深度调研 Agent 增加并行与修订能力

目标: 将并行采样和顺序修订两种高级策略，集成到我们的深度调研 Agent 中。并通过我们刚刚构建的评测框
架，量化评估这两种策略是否以及在多大程度上提升了 Agent 的性能。

核心挑战

策略融合: 如何将并行采样（横向扩展）和顺序修

订（纵向深化）有机地结合到一个 Agent 工作流

中？

成本控制: 这两种策略都会显著增加 LLM 的调用成

本，如何设计机制在性能提升和成本之间取得平

衡？

性能归因: 如何在评测中，准确地将性能提升归因

于并行采样还是顺序修订？

架构设计

顺序修订

并行采样

调研任务

子 Agent 1 (Prompt A) 子 Agent 2 (Prompt B)

初步结果

结果评估与筛选

自我反思 最终报告

Week 7: 多模态与实时交互

核心内容

实时语音电话 Agent

技术栈: VAD (语音活动检测), ASR (语音识别), LLM,

TTS (语音合成)。

低延迟交互: 优化从用户语音输入到 Agent 语音输

出的端到端延迟。

自然的打断处理: 允许用户在 Agent 讲话时随时插

入，实现更接近人类的对话流。

操作电脑和手机

视觉理解: Agent 需要理解屏幕截图，识别 UI 元素

(按钮、输入框、链接)。

操作映射: 将 "点击登录按钮" 这样的自然语言指

令，精确映射到屏幕坐标或 UI 元素ID。

现有框架集成: 直接调用 browser-use 等成熟框

架，快速赋予 Agent 操作电脑的能力。

Week 7 · 实战案例 (1/2)
实现能听会说的实时语音电话 Agent

目标: 从零开始，自己动手构建一个能够与用户进行实时、流畅语音对话的 Agent。它需要能够快速响应，理解
并执行语音指令，甚至能主动发起引导式对话。

核心挑战

延迟控制: 从用户语音输入到 Agent 语音输出的端

到端延迟，是决定体验好坏的关键。如何优化技术

栈的每个环节？

架构设计

语音输出流
大脑

语音输入流

文本流 文本流用户语音 VAD 断句 ASR 实时转写 LLM TTS 语音合成 播放声音

Week 7 · 实战案例 (2/2)
集成 browser-use，让 Agent 操作你的电脑

目标: 调用现有的 browser-use 框架，让我们的 Agent 具备操作电脑浏览器的能力。Agent 需要能理解用户的
操作指令（如"帮我打开 Anthropic 官网，找到 computer use 的文档"），并将其转化为对浏览器的实际操作。

核心挑战

框架集成: 如何将 browser-use 作为一个工具，

平滑地集成到我们现有的 Agent 架构中。

指令泛化: 用户指令可能是模糊的，如何让 Agent

理解这些指令并转化为 browser-use 支持的精确

操作。

状态同步: 如何让 Agent 感知到浏览器操作的结果

（如页面跳转、元素加载），以进行下一步的决

策。

架构设计

决策使用浏览器

page.goto(url)

返回页面截图

分析截图, 规划下一步

page.click(selector)

用户操作指令

主控 Agent

调用 browser-use 工具

浏览器

Week 7 · 进阶内容
快慢思考与智能交互管理

快慢思考 (Mixture-of-Thoughts) 架构

快速响应路径: 利用低延迟模型 (如 Gemini 2.5

Flash) 实现即时反馈，处理简单查询和维持对话流

畅性。

深度思考路径: 利用能力更强的 SOTA 模型 (如

Claude 4 Sonnet) 进行复杂推理和工具调用，为用

户提供更精准、深入的回答。

智能交互管理

聪明的打断 (Interrupt Intent Detection): 通过

VAD 和小模型过滤背景噪声和无意义的附和，只在

用户有明确打断意图时才中止发言

发言权判断 (Turn Detection): 分析用户已说出内

容的语义完整性，判断 AI 是否应该继续发言，避

免抢话

沉默管理 (Silence Management): 在用户长时间

沉默时，主动开启新话题或进行追问，保持对话的

连贯性

Week 7 · 进阶实践
实现高级实时语音 Agent

目标: 构建一个集成了"快慢思考"架构与"智能对话管理"的高级语音 Agent，使其在响应速度和交互自然度上都达
到业界领先水平。

基础推理: 提问："8 的 6 次方等于多少？"——需在 2 秒内做出初

步回应，15 秒内给出正确答案 "262144"。

工具调用: 提问："北京今天天气如何？"——需在 2 秒内回应，15

秒内通过 API 返回准确天气。

智能交互管理:

智能打断: 在 Agent 发言过程中：

用户说“嗯”，Agent 不应停止说话。

用户拍一下桌子，Agent 不应停止说话。

用户说 "那它的续航…" 时，Agent 应立即中止当前发言。

发言权判断: 用户说 "那它的续航…" 后故意停顿，Agent 不应

回应。

沉默管理: 用户说 "那它的续航…" 后停顿超过 3 秒，Agent 能

主动引导对话或追问，保持交流流畅。

架构设计

语音输出

大脑

文本流

文本流

中间思考过程

打断信号
用户语音 ASR

打断/发言权判断

快思考 LLM

慢思考 LLM

TTS 播放声音

Week 8: 多 Agent 协作

核心内容

单 Agent 的局限

上下文成本高昂: 单一上下文窗口在复杂任务中迅

速膨胀。

顺序执行效率低下: 无法并行处理多个子任务。

长上下文质量下降: 模型在过长的上下文中容易"遗

忘"或"分心"。

无法并行探索: 只能沿着单一路径进行探索。

Multi-Agent 的优势

并行处理: 将任务分解，交给不同 SubAgent 并行处

理，提升效率。

独立上下文: 每个 SubAgent 拥有独立的、更专注的

上下文窗口，保证执行质量。

压缩即本质: 每个 SubAgent 只需返回其最重要的发

现，由主 Agent 聚合，实现高效的信息压缩。

集体智能涌现: 适合开放式研究等需要多角度分析

的任务。

Week 8 · 实战案例
设计一个多 Agent 协作系统, 实现"边打电话边操作电脑"

目标: 解决"一心二用"的难题。构建一个由"电话 Agent"和"电脑 Agent"组成的团队。"电话 Agent" 负责与用户语
音沟通, 获取信息; "电脑 Agent" 负责同步操作网页。两者实时通信, 高效协同。

核心挑战

双 Agent 架构: 两个独立的 Agent，一个负责语音

通话 (电话 Agent)，一个负责操作浏览器 (电脑

Agent)。

Agent 间协同通信: 两个 Agent 必须能高效双向通

信。电话 Agent 获取的信息需立刻告知电脑

Agent，反之亦然。这可以通过工具调用实现。

并行工作与实时性: 关键在于两个 Agent 必须能并

行工作，互不阻塞。各自的上下文中，都需要包含

来自对方 Agent 的实时消息。

架构设计

电脑 Agent 流程

电话 Agent 流程

语音

A2A 通信

GUI 操作发送指令返回状态

请求澄清

用户

电话 Agent

电脑 Agent

浏览器/桌面

ASR

LLM

TTS

接收指令

多模态 LLM

执行点击/输入

Week 8 · 进阶内容
Orchestration Agent: 将 Sub-agent 作为工具
核心理念: 不再是硬编码的 Agent 间协作, 而是引入一个更高层级的 "Orchestration Agent"。它的核心职责是理解
用户顶层目标, 并动态地选择、启动和协调一组"专家 Sub-agent" (作为工具) 来共同完成任务。

实现策略

Sub-agent as Tools: 每个专家 Sub-agent (如电话

Agent, 电脑 Agent, 调研 Agent) 都被封装成一个符

合标准接口的"工具"。

动态工具调用: Orchestration Agent 根据用户需求,

异步地调用一个或多个 Sub-agent 工具。

Agent 间直接通信: 允许被调用的 Sub-agent 之间

建立直接的通信渠道, 用于高效的任务协同, 而无需

事事通过 Orchestration Agent 中转。

架构设计

决策调用

决策调用

A2A 直连

用户顶层目标

Orchestration Agent

电话 Agent 工具

电脑 Agent 工具 用户

浏览器

Week 8 · 进阶实践
用 Orchestration Agent 动态协调电话与电脑操作
目标: 重构我们"边打电话边操作电脑"的系统。不再硬编码启动两个 Agent, 而是创建一个 Orchestration Agent。
当用户提出"帮我打电话预定一个航班"的需求时, Orchestration Agent 能自动理解这个任务需要"打电话"和"操作
电脑"两种能力, 于是并行地启动这两个 Sub-agent, 并让它们协同工作。

核心挑战

任务规划与工具选择: Orchestration Agent 如何准

确地将一个模糊的用户目标, 分解为需要哪些具体

的 Sub-agent 工具。

异步工具管理: 如何管理多个并行执行、长时间运

行的 Sub-agent 工具的生命周期 (启动、监控、终

止)。

Sub-agent 间通信: 如何为动态启动的 Sub-agent

建立一个高效、临时的直接通信机制。

架构设计

任务执行

思考

并行启动

并行启动

A2A 通信 获取用户信息

填写表单

任务完成/失败

任务完成/失败 向用户报告

帮我打电话订机票

Orchestration Agent

电话 Agent

电脑 Agent 用户

航空公司网站

Week 9: 项目展示
核心内容

项目总装与展示

整合能力: 将前 8 周学习到的各项能力 (RAG, 工具

调用, 语音, 多模态, 多 Agent) 整合到一个最终项目

中。

成果展示: 每位学员将有机会展示自己独一-无二的

通用 Agent，分享创作过程中的思考与挑战。

同行评审: 通过互相演示和提问，从其他同学的项

目中获得启发和灵感。

图书打磨与总结

知识沉淀: 共同回顾和总结 9 周的核心知识点，将

其固化为最终的《深入浅出 AI Agent》书稿。

内容共创: 对书稿内容提出修改建议，共同打磨，

确保其"系统实用"。

署名出版: 所有参与共创的学员，名字都将出现在

最终出版的实体书上。

Week 9 · 实战案例
展示你独一无二的通用 Agent

目标: 对训练营期间构建的个人 Agent 项目进行一次全面的总结和展示。这不仅是一次成果汇报，更是一次将所
学知识体系化、向他人清晰阐述复杂技术方案的综合能力演练。

展示要点

Agent 定位: 你的 Agent 解决了什么核心问题？

技术架构: 你是如何综合运用所学知识 (上下文,

RAG, 工具, 多模态, 多 Agent) 来实现目标的？

创新亮点: 你的 Agent 最具创意的设计是什么？

Demo 演示: 现场演示 Agent 的核心功能。

未来展望: 你计划如何继续迭代和完善你的

Agent？

最终项目架构示例

专业 Agent 团队

核心能力

语音/文本

用户

主控 Agent

上下文与记忆系统 工具调用引擎

外部 API

RAG 知识库深度调研 Agent 编程 Agent 电话 Agent 电脑操作 Agent

Week 9 · 进阶内容 (1/2)
Agent 从经验中学习的四种方式
1. 依赖长上下文能力

思路: 相信并利用模型自身的长上下文处理能力，将完整

的、未经压缩的对话历史作为输入。

实现:

保留最近对话: 完整保留最近的交互历史 (Context

Window)。

压缩长时记忆: 利用 Linear Attention 等技术，将

遥远的对话历史自动压缩到 Latent Space 中。

提取关键片段: 利用 Sparse Attention 等技术，让

模型从遥远的对话历史中自动提取与当前任务最相关

的片段。

优点: 实现最简单，能最大程度保留原始信息细节。

缺点: 对模型能力依赖强。

2. 文本形式提取 (RAG)

思路: 将经验总结成自然语言，存入知识库。

实现: 通过 RAG 检索相关的经验文本并注入 Prompt。

优点: 成本可控，知识可读可维护。

缺点: 依赖检索的准确性。

Week 9 · 进阶内容 (2/2)
Agent 从经验中学习的四种方式
3. 后训练 (SFT/RL)

思路: 将经验学进模型权重。

实现: 将高质量的 Agent 行为轨迹作为数据，对模型进行

微调 (SFT) 或强化学习 (RL)。

优点: 将经验内化为模型的"直觉"，适合复杂任务，泛化

能力强。

缺点: 成本较高，需要大量高质量数据；周期较长，很难

实现实时的经验反馈循环，即线上刚刚失败的例子马上

不会犯类似错误。

4. 抽象为代码 (工具/Sub-agent)

思路: 将重复出现的成功模式，抽象成一个可复用的工具

或 Sub-agent。

实现: Agent 识别出可自动化的模式，并编写代码将其固

化。

优点: 可靠、高效的学习方式。

缺点: 对 Agent 的代码能力要求高；工具数量较大后，工

具选择成为挑战。

Week 9 · 进阶实践
对比 Agent 从经验中学习的四种方式

目标: 使用我们在第 6 周构建的评测框架，设计实验，来对比 Agent 从经验中学习的四种方式的优缺点。

核心挑战

实验设计: 如何设计一组任务，能够清晰地体现出

四种不同学习方式的差异？

成本与性能权衡: 如何在评测报告中，将每种方法

的"性能得分"与其"计算成本"相结合，进行综合评

估？

场景化分析: 得出结论，在什么样的任务场景下，

应该优先选择哪种学习方式？

架构设计

被评测 Agent

评测任务

评测框架

长上下文 RAG 后训练 工具和 sub-agent

性能/成本数据

LLM as a Judge

生成对比分析报告

总结回顾

9 周实战计划：构建你的通用智能体
周次 主题 内容概览 实战案例

1 Agent 入门 Agent 结构与分类、工作流式 vs 自主式 动手搭建一个能联网搜索的 Agent

2 上下文设计 Prompt 模版、对话历史、用户长期记忆 为你的 Agent 增加角色设定和长期记忆

3 RAG 与知识库 文档结构化、检索策略与增量更新 构建一个法律知识问答 Agent

4 工具调用与 MCP 工具封装与 MCP 接入、外部 API 调用 对接 MCP Server，实现深度调研 Agent

5 编程与代码执行 代码库理解、可靠的代码修改、一致的执行环境 构建一个能自己开发 Agent 的 Agent

6 模型评估与选择 模型能力评估、LLM as a Judge、安全护栏设计 构建评测数据集，用 LLM as a Judge 自动评测 Agent

7 多模态与实时交互 实时语音 Agent、操作电脑与手机 实现语音电话 Agent & 集成 browser-use 操作电脑

8 多 Agent 协作 A2A 通信协议、Agent 团队分工与协作 设计多 Agent 协作系统，实现"边打电话边操作电脑"

9 项目集成与展示 Agent 项目总装与展示、最终成果打磨 展示你独一无二的通用 Agent

9 周进阶课题
周次 主题 进阶内容概览 进阶实战案例

1 Agent 入门 上下文的重要性 探索上下文缺失对 Agent 行为的影响

2 上下文设计 用户记忆的整理 构建个人知识管理 Agent，实现长文本总结

3 RAG 与知识库 长上下文压缩 构建学术论文分析 Agent，总结论文核心贡献

4 工具调用与 MCP 从经验中学习 增强深度调研 Agent 的专家能力 (Sub-agent 与领域经验)

5 编程与代码执行 Agent 的自我进化 构建能自主利用开源软件解决未知问题的 Agent

6 模型评估与选择 并行采样与顺序修订 为深度调研 Agent 增加并行与修订能力

7 多模态与实时交互 快慢思考结合 实现快慢思考结合的实时语音 Agent

8 多 Agent 协作 Orchestration Agent 用 Orchestration Agent 动态协调电话与电脑操作

9 项目集成与展示 Agent 学习方式对比 对比 Agent 从经验中学习的四种方式

欢迎加入 AI Agent 实战营

开发一个属于你的 AI Agent，就从这里开始

Powered by

https://sli.dev/

