


Server Client



78%

77%

87%

92%

22%

23%

13%

8%

LIGHTTPD HTTP SERVER

NGINX HTTP LOAD BALANCER

REDIS KEY-VALUE STORE

NSC DNS SERVER

Kernel time User application time

0.25

1.6

11

30

0 5 10 15 20 25 30 35

Intra-host (vs. shared memory)

Inter-host (vs. RDMA)

Linux Socket shared memory (SHM) / RDMA



2017/04 Start research on high-performance socket, IPC and container networking.
2017/07 IPC-Direct: Fast and Compatible Container Networking won the most 

impactful award and global 1st place in Cloud & Enterprise category in 
Microsoft Hackathon 2017.

2017/08 Submitted a poster to SOSP’17 Student Research Competition, admitted in 
final presentation rounds.

2018/04 First submission to OSDI’18 but rejected in first-round review. Major 
reasons: difference from related work; presentation is not clear.

2018/09 Second submission to NSDI’19 but rejected in first-round review. Major 
reasons: design is too complicated; evaluation not solid.

2019/01 Third submission to SIGCOMM’19 and accepted. Improve discussion on 
related work; remove unnecessary goals and simplify design; make the 
prototype work on real applications.



User App User App

User App

Kernel VFS

Host 1

Host 2

FastSocket, Megapipe, StackMap… IX, Arrakis, SandStorm, mTCP,
LibVMA, OpenOnload…

Rsocket, SDP, FreeFlow…

User App
User-space 

VFS

User App
User-space 

VFS

Host 1TCP/IP TCP/IP

User App

Host 2

Kernel TCP/IP

NIC packet API

User-space 
TCP/IP

User-space 
TCP/IP

NIC packet API

NIC packet 
API

Kernel

NIC packet 
API

User-space 
Stack

User App
User-space 

VFS

User App
User-space 

VFS

Host 1RDMA

User App

Host 2

NIC RDMA API
Hardware-based Transport

NIC RDMA 
API

User-space 
VFS



• OSDI’18 Review: On the inter-server socket side, there have already been several 
proposals in socket over RDMA, including SDP, libvma, rsocket, OpenUCX, and UNH EXS. 
Among these, SDP, UNH EXS, rsocket all support zero copy (in some of their modes). 
There are no performance comparison with these solutions or related work discussion of 
SocksDirect's difference. There are also a bunch of user-level TCP/IP implementation.

• OSDI’18 Review: There has been a whole lot of work on high-performance stacks… The 
related work (and Table 3) would do better to contrast with these in terms of design 
rather than features… You mention highly similar systems like mTCP, but completely fail 
to make any characterization about what insights or lessons you've had that are different 
than theirs. SDP has highly similar goals to yours, and contrary to what you claim in the 
related work section was designed to be transparent to applications.

• OSDI’18 Review: Zero copy or shared memory communication isn’t new. Note that even 
recent Linux TCP stacks support zero copy.

• SIGCOMM’19 PC Meeting Summary: We also feel that you need to relate your work to 
LITE (Tsai and Zhang, SOSP'17). While LITE does not allow transparent substitution, it has 
similar goals and techniques to your work.



• NSDI’19 Review: Another doubt I have is about the need to transparently support socket 
functionality in this richer set of scenarios. The paper makes the point that previous 
approaches do not work across fork, or that they do not support intra-machine 
communication. … But a practical question here is whether this support for full semantics 
is actually needed. I didn't see the compelling applications that do not work on previous 
approaches because such support is lacking.

• NSDI’19 Review: Similarly, I strongly suspect that another reason that previous work has 
not focused on intra-machine performance is that the application scenarios haven't 
demanded it. … can you start the introduction by listing important applications that 
cannot use previous high-performance networking stacks because they lack support for 
fork, intra-machine communication, etc.?



• OSDI’18 Review: I did not understand why we should use a TCP socket for intra-machine 
communication instead of a unix domain socket or a pipe. The latter performs much 
better on Linux, but evaluation seems to miss this point.

• NSDI’19 Review: I did not find the corresponding motivation for accelerating intra-host 
communication in this paper. You might want to show that (1) the performance of intra-
host communication is critical for many applications and (2) what performance problems 
that existing kernel stacks have. The paper does not even show and compare the 
performance of unix domain sockets or pipes, and simply jumps on improving TCP 
sockets for intra-host communication.

• OSDI’18 Review: Why do you use TCP sockets for intra-machine connections? Why not 
use a unix domain socket or a pipe? The following page says that using unix domain 
sockets or pipe() brings 3x better latency and produces 7x better throughput than a TCP 
connection. …

• OSDI’18 Review: Using shared memory for IPC is common. The authors use it for socket 
communication across processes/threads.





OS

Application

Lock

send() syscall

VFS send

Copy data, allocate mem

TCP/IP

TCP send buffer

Network packet

C library

send() socket call

OS

Application

Lock

recv() syscall

VFS recv

Copy data, 
free mem

TCP/IP

TCP recv buffer

Network packet

C library

recv() socket call

Event 
Notification

Wakeup 
process

Process 
Scheduling

Network packet

Packet processing 
(netfilter, tc…)

Network packet

Packet processing 
(netfilter, tc…)

Network packet



Type Overhead (ns) Linux LibVMA RSocket SocksDirect

Inter-host Intra-host Inter-host Intra-host Inter-host Intra-host Inter-host Intra-host

Per operation

Total 413 177 209 53

C library shim 12 10 10 15

Kernel crossing (syscall) 205 N/A N/A N/A

Socket FD locking 160 121 138 N/A

Per packet

Total 15000 5800 2200 1300 1700 1000 850 150

Buffer management 430 320 370 50

TCP/IP protocol 360 260 N/A N/A

Packet processing 500 N/A 130 N/A N/A

NIC doorbell and DMA 2100 N/A 900 450 900 450 600 N/A

NIC processing and wire 200 N/A 200 N/A 200 N/A 200 N/A

Handling NIC interrupt 4000 N/A N/A N/A N/A

Process wakeup 5000 N/A N/A N/A

Per kbyte

Total 365 160 540 381 239 212 173 13

Copy 160 320 160 13

Wire transfer 160 N/A 160 N/A 160 N/A 160 N/A



• SIGCOMM’19 Review: I'd like to see experimental results that don't use the page-
remapping technique, plus more details of how this can be managed securely.

• SIGCOMM’19 Review: … it fails to highlight how the various pieces to the solution 
contribute to the performance gains. I would have liked to see the performance gains 
dissected in more details.

• SIGCOMM’19 Review: I would expect that there are some performance vs. 
compatibility trade-offs here but the paper fails to highlight them and quantify where 
certain performance gaps existing.

• SIGCOMM’19 PC Meeting Summary: There's a lot of engineering work in your solution, 
but the evaluation doesn't let us separate the relative costs and benefits of the 
individual choices.



Compatibility
• Drop-in replacement, no application modification

Isolation
• Security isolation among containers and applications
• Enforce access control policies

High Performance
• High throughput
• Low latency
• Scalable with number of CPU cores
• Scalable with number of concurrent connections



• NSDI’19 Review: Misleading claim. The intro says that the proposed system maintains 
good performance even with millions of concurrent connections, which sounds very nice. 
I later find out that this is for supporting millions of connections between TWO 
processes/threads as they multiplex a single queue for communication. But why is that 
important? What matters in practice is to support a large number of concurrent 
connections with millions of remote clients, where you can’t share a queue.

• NSDI’19 Review: What is the usage scenario for supporting a million simultaneous 
connections between two processes over RDMA? The million connections scenario is a 
web server scenario, which is going to have a (relatively) small number of server 
processes and a huge number of external clients, and they will be using TCP since it's not 
internal to a data center.

• The real problem in datacenter that SocksDirect did not solve: one storage/DB server 
with thousands of storage/DB clients, where the traffic is bursty.



Shared 
Buffer

Monitor ProcessACL rules

connect send recv accept



User App

libsd

User App

libsd

User App

libsd
User App

TCP/IP

TCP/IP

Monitor
Host 1

Host 2 Host 3
No SocksDirect

Monitor

Mem QueueMem Queue

Mem Queue

TCP/IP

RDM
A

NIC RDMA 
API

NIC Packet 
API

NIC RDMA 
API



Type Overhead Linux RTT (ns) SocksDirect RTT (ns)

Inter-host Intra-host Inter-host Intra-host

Per operation

Total 413 53

C library shim 15 15

Kernel crossing (syscall) 205 N/A

Socket FD locking 160 N/A

Per packet

Total 15000 5800 850 150

Buffer management 430 50

TCP/IP protocol 360 N/A

Packet processing 500 N/A N/A

NIC doorbell and DMA 2100 N/A 600 N/A

NIC processing and wire 200 N/A 200 N/A

Handling NIC interrupt 4000 N/A N/A

Process wakeup 5000 N/A

Per kbyte

Total 365 160 173 13

Copy 160 13

Wire transfer 160 N/A 160 N/A



Type Overhead Linux RTT (ns) SocksDirect RTT (ns)

Inter-host Intra-host Inter-host Intra-host

Per operation

Total 413 53

C library shim 15 15

Kernel crossing (syscall) 205 N/A

Socket FD locking 160 N/A

Per packet

Total 15000 5800 850 150

Buffer management 430 50

TCP/IP protocol 360 N/A

Packet processing 500 N/A N/A

NIC doorbell and DMA 2100 N/A 600 N/A

NIC processing and wire 200 N/A 200 N/A

Handling NIC interrupt 4000 N/A N/A

Process wakeup 5000 N/A

Per kbyte

Total 365 160 173 13

Copy 160 13

Wire transfer 160 N/A 160 N/A



• NSDI’19 Review: It is nice to handle sharing a socket with multiple senders or multiple 
receivers. However, while required for correct operation, such communication pattern is 
pretty unusual. Except for a popular scenario that shares a listening socket with multiple 
processes/threads, I think it would be rare for multiple senders to share a socket to send 
messages concurrently or the other way around (multiple receivers contend to receive 
messages simultaneously). If not, please explain which application does this.



Sender 1

Sender 2
ReceiverQueue

Sender
Receiver 1

Receiver 2
Queue

Lock

Lock

Sender 1

Sender 2
ReceiverQueue

Sender
Receiver 1

Receiver 2
Queue

Receive
token

Send
token



• OSDI’18 Review: Not sure what’s the benefit of a single queue for all connections of two communicating 
machines? I think such a design choice makes the implementation unnecessarily complex (e.g., picking 
from middle of queue). You might want to compare the performance of a single aggregate queue vs. a per-
connection queue.



Parent process

Child process

FD Table

5 (COW)

FD Table

5 (COW)

Shared pages
FD Table

3

4

SHM (shared)

RDMA QP

3 (on demand)

5

SHM (shared)
SHM Queue

4

SHM (private)
Socket Data

5

Socket Data

3

4

RDMA QP

3

Socket Data

3

4

5

RDMA QP

3

5



• OSDI’18 Review: The Linux socket semantics is that "The file descriptor returned by a 
successful call will be the lowest-numbered file descriptor not currently open for the 
process." (http://man7.org/linux/man-pages/man2/socket.2.html), which would no 
longer be true. This change would break (potentially buggy) applications that rely on low-
numbered socket descriptors as an index to an array.

• In NSDI’19 submission, we found that Redis and Memcached rely on the lowest FD 
behavior.

• NSDI’19 Review: In section 3.2, your system maintains an FD translation table to be 
compatible with the POSIX standard that returns the lowest unused FD for a new FD. 
While this maintains the compatibility with existing applications, it incurs a high 
overhead on a busy server in practice. … Note that other high-performance TCP/IP stacks 
like MegaPipe and mTCP intentionally avoid this overhead by not conforming to the 
requirement.

• In SIGCOMM’19 submission, we no longer claim socket establishment throughput 
because it is not important at all in datacenters! (Remove unnecessary design goals)



Type Overhead Linux RTT (ns) SocksDirect RTT (ns)

Inter-host Intra-host Inter-host Intra-host

Per operation

Total 413 53

C library shim 15 15

Kernel crossing (syscall) 205 N/A

Socket FD locking 160 N/A

Per packet

Total 15000 5800 850 150

Buffer management 430 50

TCP/IP protocol 360 N/A

Packet processing 500 N/A N/A

NIC doorbell and DMA 2100 N/A 600 N/A

NIC processing and wire 200 N/A 200 N/A

Handling NIC interrupt 4000 N/A N/A

Process wakeup 5000 N/A

Per kbyte

Total 365 160 173 13

Copy 160 13

Wire transfer 160 N/A 160 N/A



• Many sockets share a ring buffer
• Receiver segregates packets from 

the NIC
• Buffer allocation overhead
• Internal fragmentation

tail

head
tailhead

per-socket

• One ring buffer per socket
• Sender segregates packets via 

RDMA or SHM address
• Back-to-back packet placement
• Minimize buffer mgmt. overhead



tail

send_next

headRDMA write data

RDMA write credits (batched)

Two copies of ring buffers on both sender and receiver.
Use one-sided RDMA write to synchronize data from sender to receiver, and 
return credits (i.e. free buffer size) in batches.
Use RDMA write with immediate verb to ensure ordering and use a shared 
completion queue to amortize polling overhead.



• NSDI’19 Review: How does SocksDirect recover when the other endpoint fails?
• Our approach: two copies of ring buffers on both sender and receiver. (It also enables 

batching.)



Type Overhead Linux RTT (ns) SocksDirect RTT (ns)

Inter-host Intra-host Inter-host Intra-host

Per operation

Total 413 53

C library shim 15 15

Kernel crossing (syscall) 205 N/A

Socket FD locking 160 N/A

Per packet

Total 15000 5800 850 150

Buffer management 430 50

TCP/IP protocol 360 N/A

Packet processing 500 N/A N/A

NIC doorbell and DMA 2100 N/A 600 N/A

NIC processing and wire 200 N/A 200 N/A

Handling NIC interrupt 4000 N/A N/A

Process wakeup 5000 N/A

Per kbyte

Total 365 160 173 13

Copy 160 13

Wire transfer 160 N/A 160 N/A



• Map 1 page: 0.78 us
• Copy 1 page: 0.40 us

• Map 32 pages: 1.2 us
• Copy 32 pages: 13.0 us

Send physical page



Monitor and library in user space.
Shared-nothing, use message passing for communication.

Use hardware-based transports: RDMA / SHM.

Token-based socket sharing.
Optimize common cases, prepare for all cases.

Per-socket ring buffer.

Batch page remapping.

Cooperative context switch.



User App

libsd

User App

libsd

User App

libsd

Monitor
Host 1

Host 2

Monitor

Mem QueueMem Queue

Mem Queue

RDM
A

NIC RDMA 
API

NIC RDMA 
API









• SIGCOMM’19 Review: It also does not help that the evaluation presents results that 
appear to have been cherry-picked to put SocksDirect in the best scenario.

• SIGCOMM’19 Review: I would have liked to see a more thorough evaluation and I 
would have expected that the paper highlights where SocksDirect is not ideal. Currently 
my feeling is that these results were chosen as they show the best scenarios.

• OSDI’18 Review: Really importantly, what are the edges of your system 
that don't perform well, or are hard to deploy and maintain? What are the important 
tradeoffs?





on the same machine 
emphasize the performance of your intra-host communication

What is the experimental setup 



Contributions of this work:
• An analysis of performance overheads in Linux socket. 
• Design and implementation of SocksDirect, a high performance user space 

socket system that is compatible with Linux and preserves isolation among 
applications.

• Techniques to support fork, token-based connection sharing, allocation-
free ring buffer and zero copy that may be useful in many scenarios other 
than sockets. 

• Evaluations show that SocksDirect can achieve performance that is 
comparable with RDMA and SHM queue, and significantly speedup existing 
applications.



1. Rejections are common.
2. Rejections are constructive.
3. Published papers are not perfect.
4. Talk with experts both inside and outside your institution.
5. There is no new thing under the sun. The solution to your (sub-)problem 

may be already in a paper twenty years ago, or in a paper of another field.
6. Think why many old, failed techniques are reinvented 30 years later and 

become successful.




