
The Feniks FPGA Operating System for Cloud Computing

Jiansong Zhang§ Yongqiang Xiong§ Ningyi Xu§ Ran Shu§† Bojie Li§‡

Peng Cheng§ Guo Chen§ Thomas Moscibroda§

§ Microsoft Research †Tsinghua University ‡USTC
{jiazhang,yqx,ningyixu,v-ranshu,v-bojli,pengc,guoche,moscitho}@microsoft.com

ABSTRACT
Driven by explosive demand on computing power and slow-
down of Moore’s law, cloud providers have started to deploy
FPGAs into datacenters for workload offloading and accel-
eration. In this paper, we propose an operating system for
FPGA, called Feniks, to facilitate large scale FPGA deploy-
ment in datacenters. XFeniks provides abstracted interface for
FPGA accelerators, so that FPGA developers can get rid of
underlying hardware details. In addtion, Feniks also provides
(1) development and runtime environment for accelerators
to share an FPGA chip in efficient way; (2) direct access to
server’s resource like storage and coprocessor over PCIe bus;
(3) an FPGA resource allocation framework throughout a dat-
acenter. We implemented an initial prototype of Feniks on
Catapult Shell and Altera Stratix V FPGA. Our experiements
show that device-to-device communication over PCIe is fea-
sible and efficient. A case study shows multiple accelerators
can share an FPGA chip independently and efficiently.

1 INTRODUCTION
Driven by explosive demand on computing power and slow-
down of Moore’s law, heterogeneous computing has attracted
huge interests recent years. In the case of cloud computing,
service providers are eager to offload large amount of CPU
loads to more power/cost efficient devices, such as GPU,
FPGA and ASIC, so as to support emerging workloads like
deep learning inference and training, as well as save cost for
existing workloads. Among these computing devices, FPGA
can provide the highest flexibility in addition to much higher
power/cost efficiency than CPU. Thus, many cloud providers
have decided to deploy FPGA in large scale. For example,
Microsoft has started to deploy FPGA in every Azure server
to accelerate Bing ranking [4], network virtualization [6],
and other workloads; Amazon has started to provide special

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’17, Mumbai, India
© 2017 ACM. 978-1-4503-5197-3/17/09. . . $15.00
DOI: 10.1145/3124680.3124743

EC2 instances mounting multiple FPGAs to cloud users [2];
Baidu has deployed FPGAs to accelerate SSD access in its
cloud [18].

FPGA contains a large number of basic logic units, e.g.,
LUT, flip-flop, block memory and DSP, as well as rich inter-
connections between the units. In theory, an FPGA chip can
be configured to any type of hardware logic, even processors
like CPU, GPU, network processor, etc. In practice, a set of
workloads which can take advantage of FPGA’s high paral-
lelism and flexible data-width will most likely be offloaded,
such as ranking [20], compression [8], encryption [4, 13],
pattern matching [21], deep learning serving [17], etc.

From cloud providers’ point of view, they expect those
deployed FPGAs to accelerate as many cloud workloads as
possible to pay back the investment, meanwhile also catch
up the pace of workload evolving. Therefore, cloud providers
desire various infrastructure supports to facilitate workload
offloading. Firstly, to achieve high productivity, FPGA devel-
opers should be able to focus on application logic, but get
rid of underlying details of specific hardware, like off-chip
memory controller, PCIe endpoint and DMA engine, network
protocols. Secondly, as coprocessors, FPGAs should be able
to access cloud resources in an easy and efficient way. Cloud
resources include server’s main memory, disk or SSD stor-
age, other coprocessors like GPU and many-core processor
(e.g., Intel Xeon Phi), and cloud networks. Thirdly, as a new
type of cloud resource, FPGA itself also should be allocated,
scheduled and accessed in an easy and efficient manner.

In this paper, we present our research effort towards such in-
frastructure support and propose an operating system layer for
FPGA, called Feniks. Basically, Feniks provides abstracted
interfaces to various FPGA accelerators. On Feniks, accelera-
tor developers can focus on accelerator logic itself but get rid
of underlying details of FPGA IOs like FPGA to host, FPGA
to off-chip memory, FPGA to storage and FPGA to network
interface card communications. Moreover, Feniks separates
operating system and application accelerators by leveraging
the partial reconfiguration feature provided by FPGA vendors,
so that OS and application images can be loaded separately.
This separation makes it possible for cloud providers to take
full control of the FPGA hardware and physical interfaces,
and perform protection for malicious or careless accelerators
from destroying other FPGA logic or host system.

In additon to hardware abstraction and OS/application
separation, Feniks provides three important features. Firstly,
Feniks can further divide an FPGA chip into multiple indepen-
dent regions. In this way, multiple accelerators will share the
same FPGA chip without interfering with each other. Feniks
also provides IO virtualization so that multiple accelerators
can use identical virtual IO interface and get similar IO per-
formance. Secondly, Feniks provides direct access to server’s
resources like disk and other coprocessors over server’s PCIe
bus. In this way, FPGA can communicate to devices with-
out CPU intervention, thereby saving CPU cycles and reduc-
ing communication latency when FPGA accelerator needs to
write data into disk or work together with other coprocessor
to construct a computing pipeline. Moreover, by connecting
cloud network directly, FPGA can also access resources in
remote servers. Thirdly, Feniks provides a resource allocation
framework for FPGAs throughout a datacenter. Applications
can use this framework to obtain available FPGA resources
and deploy accelerator for workload offloading.

We implemented an initial prototype based on Catapult
Shell and Altera Stratix V FPGA. The operating system com-
ponents occupies 13% logic and 11% on-chip memory. Our
experiments using two FPGAs prove that PCIe root com-
plex can provide near full PCIe capacity for device-to-device
communication and sub-us latency. A case study with data
compressor and network firewall shows that multiple acceler-
ators can share an FPGA chip without interfering with each
other. Finally, accelerator migration based on Feniks’s re-
source sharing framework takes less than 1s between two
servers on the same rack.

2 BACKGROUND AND RELATED WORK
Deploying FPGAs in cloud servers is becoming a trend [2, 4,
18]. Normally, each FPGA is carried on a board with one or
more DRAM modules attached. The board is then inserted
into a server’s PCIe slot. The FPGA can communicate with
server’s CPU through interrupt and shared memory, i.e., both
in server’s main memory and in FPGA’s on-chip or off-chip
memory which is mapped in server’s address space. Depend-
ing on specific deployment strategy, the FPGA board may
also contain one or more network interfaces connected to
cloud network [4, 20] or certain dedicated wires [2, 20].

Implementing these interfaces and necessary upper layer
logic, e.g., direct memory access over PCIe endpoint, network
transport over Ethernet MAC, etc., also consumes FPGA’s
common logic units, and requires developers’ effort to build
up. Fortunately, FPGA boards usually share the same config-
uration across a cloud to ease large scale deployment, it is
possible to pack FPGA’s interface logic into a fixed frame-
work, which is usually called FPGA shell, e.g., in Microsoft
Catapult [20] and in Amazon EC2 [2]. In academia, there is
also effort like RIFFA [11] which provides a framework for

similar purpose but aims higher to adapt to diverse hardware
configurations. In this paper, we extend the shell concept to
operating system concept by adding a set of advanced fea-
tures like performance isolation between applications and
operating system, efficient cloud resource access and flexible
FPGA resource allocation. LEAP [7] also brings operating
system concept but extends in a different way by providing
programming model and compiler to automatically gener-
ate FPGA design from application modules and supporting
libraries. This effort is more aligned with high level pro-
gramming support provided by Xilinx and Altera, as well
as other academia efforts like Bluespec [16], Hthreads [19],
ClickNP [13], CMOST [26], etc.

FPGA resource sharing and allocation in cloud has started
to attract research interests. On the one hand, Byma [3] and
Chen [5] share a single FPGA chip to multiple users by divid-
ing logic units in an FPGA chip into several virtual accelera-
tors using partial reconfiguration, and then allocating virtual
accelerators to users using openstack. On the other hand,
FPGAs are grouped together to construct larger accelerator.
For example, Catapult [20] connects every 48 FPGAs into a
cluster using a secondary cross-bar network. Amazon [2] con-
nects 8 FPGAs in a ring topology using dedicated wires. In
academia, FPGA cluster generator [23] is proposed to group
FPGAs over network by leveraging SAVI, openstack and
Xilinx SDAccel. In Feniks, we provide a framework for flexi-
ble FPGA resource allocation throughout a datacenter. This
framework allows multiple applications to share the same
FPGA chip, as well as grouping multiple FPGAs to serve a
single application under certain latency and bandwidth con-
straints.

Finally, there is a rich set of literatures which integrate
FPGA into general purpose operating system. For example,
BORPH [22] modified Linux kernel to run FPGA process in
the same way of running CPU process. HybridOS [12] also
modified Linux to provide a framework for CPU and FPGA
accelerator integration. ReconOS [14] extends multi-thread
programming model into hybrid CPU and FPGA platform.
FUSE [10] leverages loadable kernal module to support FPGA
logic changes while integrating with software operating sys-
tem. We notice that, most of the integration works above are
implemented in embedded platforms that FPGA is close to
CPU. In our design, we do not incorporate tight integration
between software and FPGA operating system. Because in
today’s cloud deployment, FPGAs reside in servers’ IO do-
main and suffer from larger latency while communicating
with CPU, i.e., it will be inefficient if FPGA and CPU com-
municate as frequently as multiple CPUs or multiple cores.
Nevertheless, we expect in the future, when FPGA is inte-
grated into CPU socket [9] or even CPU die, the integration
between software and FPGA operating system will become
more desirable and critical.

2

…

FPGA

Cloud
Networks

PCIe

Host CPU

Figure 1: Feniks operating system overview. Feniks pro-
vides abstracted interfaces to applications by dividing an
FPGA into an OS region and several application regions.
The OS region contains stacks and modules to communi-
cate with FPGA’s local DRAM, host CPU and memory,
server resources and cloud resources in an efficient man-
ner. Feniks also includes support for FPGA resource al-
location with centralized controllers in cloud and agents
running on host CPUs.

3 FENIKS FPGA OPERATING SYSTEM
In this section, we present the design of Feniks FPGA operat-
ing system which provides infrastructure support to facilitate
the development and opertaion of FPGA accelerators in cloud.
As shown in Figure 1, on each FPGA chip, a Feniks instance
divides an FPGA’s space into an OS region and one or several
application regions. Feniks provides FIFO based interfaces
for each application region to use off-chip DRAM, communi-
cate with host application instance and access various cloud
resources. Accelerator developers only need to connect their
accelerator logic to these abstracted interfaces without worry-
ing about the detailed implementation of underlying hardware
interfaces, therefore can focus on developing accelerator logic.
On runtime, OS instance is loaded separated with accelerator
instances. Normally, OS instance is loaded in advance by
cloud operator and rarely changed. Then, accelerators can be
loaded dynamically by users. In section 3.1 we will further
discuss performance isolation between accelerators.

Besides basic OS functions, a key design goal of Feniks is
to facilitate resource access and allocation for FPGAs in cloud.
On the one hand, Feniks fully exploits the connectivity over
server’s PCIe bus to enable FPGA to directly access devices
attached in server, such as storage device and coprocessors.
In section 3.2 we will further discuss the techniques for cloud
resource access over PCIe. On the other hand, Feniks also pro-
vides support for FPGA resource allocation to cloud users and
applications. Specifically, Feniks always launches a resource
allocation agent on host CPU to allocate and load accelerators.
These agents execute commands from centralized controllers

which perform global FPGA resource allocation and schedul-
ing for a datacenter. In section 3.3 we will elaborate FPGA
resource allocation in Feniks.

3.1 Performance Isolation and Multi-tasking
Although Feniks resembles software operating system in func-
tion, its implementation is necessarily very different as it tar-
gets FPGA. In software operating system running on CPU,
user programs are organized into processes and threads that
share a common execution substrate with operating system,
i.e., the processor and its memory. FPGAs differ from this
model in the way that FPGA executions are multiplexed in
spatial domain instead of time domain, i.e., FPGA programs
are organized as spatially distributed modules, with portions
of the FPGA fabric dedicated to each of the different functions
of the program and the operating system. Therefore, perfor-
mance isolation in Feniks is natually performed by isolating
application regions and OS regions. Similarly, multi-tasking is
supported by assigning tasks into multiple application regions
in which tasks can run simultaneously.

We leverage the partial reconfiguration (PR) feature pro-
vided by FPGA vendors. PR basically disables the logic units
and interconnects on the boundary of a specified region, there-
fore physically prevents logic inside and outside the region
from interfering with each other. In order to connect a PR re-
gion with outside logic, some LUTs can be explicitly enabled
in the boundary specification. In Feniks, we provide a set of
templates to accelerator developers with different PR region
configurations. For example, single PR region for application
to occupy an FPGA exclusively, or multiple PR regions for ap-
plications to share an FPGA. Accelerator developer only need
to select a proper template and fill in the accelerator logic.
After compilation, an image containing only accelerator logic
will be generated. To deploy the image, a Feniks image with
the same PR region configuration should be loaded in ad-
vance, and then accelerator image can be loaded any time
later. In this way, cloud operators are possible to provide se-
curity support that the operating system functions will not
be destroyed by malicious or careless accelerator logic, and
multiple accelerators will not interfere with each other.

Feniks mainly relies on spatial sharing for multi-tasking
instead of dynamic accelerator reloading (context switching)
because application image loading time will add significant
overhead. As shown in Figure 2, application loading time
measured on Altera Stratix V FPGAs is between 10s ms and
100s ms which is proportional to the application region size.
It is reasonable because loading an application needs to re-
configure all the logic units in the region. However, we expect
context switching in the same region would be feasible if
multi-context FPGA [24] is deployed sometime.

Finally, in Feniks, we leverage the ability of dynamic ac-
celerator loading to provide application migration service.

3

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

C
D

F

Application Loading Time (ms)

25% space

50% space

75% space

Figure 2: Accelerator loading time to PR region when
region size is 25%, 50% and 75% of FPGA space. The
loading time is between 10ms ∼ 100ms and proportional
to region size. Due to the high loading time, we do not
encourage multi-tasking using context switching.

Specifically, when migration decision is made (as will be
discussed in section 3.3), the running accelerator stores its
states into on board memory. Then, both the stored states
and accelerator image are transmitted to destination host, on
which the states and image are loaded into destination FPGA’s
application region.

3.2 Accessing Server and Cloud Resources
In this subsection, we discuss in details the operating system
modules in Feniks. As a key design goal, we emphasize how
Feniks enables FPGAs to access server and cloud resources
in an efficient way, including direct access to local resources
over PCIe and remote access through cloud networks.

3.2.1 Local Direct Access over PCIe. In today’s cloud,
FPGAs acts as coprocessors in cloud servers. By default,
FPGA does not have direct access to various resources in
server’s IO domain like disk and other coprocessors. BORPH [22]
enables FPGA to access Linux files by adding kernel service
to receive FPGA’s commands and execute instead. However,
this approach is inefficient as CPU will be heavily involved.
For example, when we offload data compression engine into
FPGA and would like to write the compressed data into disk,
it will add significant CPU overhead if FPGA first writes
compressed data into main memory through DMA and then
CPU writes the data into disk. Similarly, if we want to build a
computing pipeline using FPGA and GPU in the same server,
e.g., using FPGA to decompress a big data set before perform-
ing deep learning model training using GPU, it will also add
significant CPU overhead as well as more latency if every
FPGA and GPU need to write intermediate results into main
memory and ask CPU to forward.

In Feniks, we leverage the device-to-device connectivity
over server’s PCIe bus to enable efficient resource access. As
shown in Figure 3, various devices are connected to CPU
through PCIe interface. Every device implements a PCIe end-
point which can communicate with the PCIe root complex

FPGA

CPU

Storage Coprocessor NIC

Figure 3: Devices are connected to CPU’s PCIe root com-
plex. Traditionally, devices send data to main memory
through DMA, and CPU will forward to other devices.
However, PCIe root complex actually supports device-to-
device communication. Every device can send messages
to others through their memory mapped IO address.

inside CPU. Since every device has a PCIe configuration
space mapped in software operating system’s memory ad-
dress space, one device can also directly communicate with
other devices using their memory-mapped PCIe configuration
space address. This connectivity has been exploited in GPU
to RDMA NIC direct connection [1].

Therefore, in Feniks, we add modules in FPGA operating
system to enable accelerators to access various devices di-
rectly through PCIe. Among all the devices, the easiest is
FPGA to FPGA communication when multiple FPGAs are in-
serted in the same server. Every FPGA only needs to get other
FPGA’s configuration space address and uses DMA-write
message defined in PCIe transport to send data. This FPGA-
to-FPGA communication has also been provided by Ama-
zon’s single server FPGA cluster [2]. Accessing coprocessors
are also relatively easy as they usually map their memory into
their PCIe configuration space, therefore FPGA can directly
write data into coprocessors’ memory using DMA-write mes-
sages. Meanwhile, in opposing direction, coprocessors can
also use their own DMA engine to write data into FPGA’s
PCIe configuration space. Storage devices also can be access
through PCIe. Specifically, When FPGA gets AHCI’s PCIe
configuration space address, it can send read and write mes-
sages to AHCI’s registers to send commonds. In this way,
FPGA can read and write any sector of the attached storage
devices. However, to avoid racing between software OS and
FPGA OS, in Feniks, we currently reserve a portion of disk
space dedicated for FPGA to access. To enable accelerators
to use this reserved disk space, in our design we include
a simplified file system similar to [15] for accelerators to
create, read and write files. Network interface card (NIC)
is also attached in PCIe slots and therefore can be used by
FPGA. Traditional NIC requires complicated IP and transport
layer network stack implementation in software operating sys-
tem. The stack contains complicated control logic like TCP,

4

…

…

…

Network Stack Storage Stack

…

Figure 4: Feniks provides virtualized devices and stacks
to application regions. In this way, every accelerator can
use identical device interface and address space.

therefore is very difficult to implement in FPGA. Fortunately,
recent advance of hardware based stack implementation in
RDMA NIC greatly simplifies the NIC interface and makes it
possible for FPGA to use. Similar to GPUDirect [1], FPGA
needs to send its own PCIe configuration space address to
RDMA NIC to perform remote DMA read and write for net-
working with other servers. Worth noting, all the direct device
access requires driver support in software operating system
as they need to exchange memory mapped IO address and
reserve resource to avoid racing.

3.2.2 Remote Access Through Cloud Networks. As
long as FPGAs can connect with each other through cloud
networks, each FPGA can act as an agent for remote FPGA to
access its local server’s resources. For example, when multi-
ple FPGAs across servers are grouped together to construct a
computing acceleration pipeline, e.g., for search ranking [20],
or an FPGA needs to read data from a remote disk.

Besides RDMA NIC, the network connectivity also can be
achieved through the network interface available on FPGA
chip itself. For example, Microsoft Catapult provides such
a topology called "bump-in-the-wire" in which FPGAs are
connected directly with each other through cloud networks [4].
In such design, a RDMA like hardware transport should be
implemeted in FPGA to control packet transmissions.

3.2.3 FPGA IO Virtualization. Finally, for all the FPGA
interfaces, e.g., network, storage, host communication and
off-chip memory, multiple application regions must use the
same underlying device and stack for I/O operations. To sup-
port I/O resource sharing and provide identical interface to
all application regions, Feniks incorporates device and stack
virtualization. Figure 4 shows the structures for network and
storage virtualization. Both stacks provide virtual stack in-
stances separately for every application region. These virtual
instances are connected to underlying device through multi-
plexing logics. In network stack, transmissions are divided
into two directions, i.e., TX and RX. On TX direction, since

aggregated input bandwidth will exceed output bandwidth,
we should provide mechanism for certain quality of service.
In Feniks, we schedule traffics in TX scheduler according to
certain network sharing policy, e.g., weighted fair bandwidth
sharing. On RX direction, a dispatcher is enough which dis-
patches incoming network packets to corresponding virtual
stack instance. In storage stack, we rely on address translator
to perform storage resource sharing. For block device, i.e.,
disk or SSD, we provide identical virtual sector address space
to every application region, and then use address translator to
translate virtual sector address into physical sector address.

For off-chip memory, in order to save more logic resource
for application regions, we do not include caching structure in
Feniks’s operating system region as have been done in other
design [7]. But we leave the raw memory interface with only
necessary address translation for multiple accelerators to use
identical virtual memory space.

For host communication interface, we leave a DMA inter-
face and a register interface for every application region. On
the DMA interface, host memory address information is not
passed but left in FPGA operating system, so that acceler-
ators will not perform DMA to illegitimate address which
may destroy the software operating system. On the register
interface, the register address space is also identical to every
application region and the underlying operating system will
perform address translation.

3.3 Support for FPGA Resource Allocation
In this subsection, we discuss the resource allocation frame-
work in Feniks. As discussed in Section 3.1, the basic unit
of FPGA resource is application region. Depending on spe-
cific requirement, an application can occupy one or multiple
regions, and the region size can be selected from a set of
configurations. Feniks’s resource allocator will load different
operating system image for different region size, as also has
been discussed in Section 3.1.

Feniks manages FPGAs in a manner similar to Yarn [25]
and other job schedulers. As shown in Figure 5, a logically
centralized resource allocation controller tracks FPGA re-
sources throughout the cloud. For each specific application,
a service manager will request FPGA resources from central
controller through a lease-based model. Then the service man-
ager sends configuration commands to the resource allocation
agents reside on every server node. According to the com-
mands, these agents will load proper OS image and set up
inter-FPGA connections. On application serving period, the
agents also load accelerator images dynamically and monitor
system status continuously.

In many cases, an application only requires a single FPGA
region to accelerate the workload on host server, for exam-
ple, data compression [8], network virtualization [6], pattern
matching [21], etc. Central controller will prefer to allocate

5

Cloud
Networks

Figure 5: Feniks’s resource allocation framework. A
logically centralized controller tracks FPGA resources
throughout the datacenter. On every server, an agent
loads proper FPGA images and set up inter-FPGA con-
nections according to the commands from service man-
ager. A service manager may group multiple FPGAs into
a pipeline depending on application requirement.

regions from the FPGAs which are already serving other ap-
plications. In these cases, service manager needs to specify
IO bandwidth requirement to guide the configuration of the
schedulers in FPGA operating system, as described in Sec-
tion 3.2.3. In other cases that an application instance requires
more than one FPGA to serve, its service manager needs
to specify latency and bandwidth requirements for grouping
FPGAs. For example, for latency sensitive application like
search ranking [20] and deep learning inference [17], using
those FPGAs in the same server or rack, or interconnected
with additonal dedicated wires [2, 20], will be prefered.

4 PRELIMINARY RESULTS
We implemented an initial prototype of Feniks based on Cat-
apult Shell and Altera Stratix V FPGA. Our prototype in-
cludes a streaming DMA engine, network (including FPGA-
to-FPGA and FPGA-to-coprocessor connection) stack, off-
chip memory controller, IO virtualization modules (as de-
scribed in section 3.2.3) and partial reconfiguration engine.
Table 1 shows resource consumption numbers of these operat-
ing system components. In total, our current implementation
of Feniks’s operating system consumes 13% logic and 11%
on-chip memory of the Stratix V FPGA. Although not im-
plemented yet, we expect that the storage stack and the rest
of network stack will add limited overhead because they are
request-response interfaces similar to DMA engine and not
more complicated. Moreover, using later catapult hardware
with Arria 10 FPGA which contains 2.5 times more logic and
BRAM, Feniks’s operating system will occupy less portion.

4.1 Communication over PCIe
Based on our prototype, we tested the communicate capability
over PCIe. We inserted two FPGA boards into Dell R730

DMA&Network DDR Controller PR engine
Logic (ALM) 4.8% 7.6% 0.2%
Block RAM 7.1% 3.5% 0.4%

Table 1: Resource consumption of operating system com-
ponents in our initial prototype.

FPGA
CPU

Figure 6: Case study: Feniks supports data compressor
and network firewall to run simultaneously and indepen-
dently. Application migration is decided by central con-
troller on CPU and executed by agent on FPGA.

server (two Intel Xeon E5-2698 CPUs)’s PCIe slots. We test
communication throughput and round-trip latency when two
boards are attached to the same CPU or different CPUs. We
found the PCIe root complex provides nearly full capacity
(3.9GBps, PCIe gen3 x8) for devices to communicate over
PCIe, but the QPI interconnection between CPUs will be
the throughput bottleneck (0.25GBps) for device-to-device
communication, though round trip latency is always as low
as around 1us in both cases.

We conclude that device-to-device communication over
PCIe is feasible and beneficial by avoiding CPU overhead
and reducing latency. To optimize performance, we suggest
to attach devices to the same CPU or use PCIe switch chip as
the same observation from GPUDirect [1].

4.2 Case Study
Then we discuss an example use case in which two accelera-
tors, i.e., a data compression engine and a network firewall,
are sharing the same FPGA chip on top of Feniks.

For applications, we use the XPress9 compressor [8] imple-
mented in verilog and openflow firewall [13] implemented in
opencl. As shown in Figure 6, in this case we allocate 40% of
FPGA space to each of the applications which is already suf-
ficient. We customized both applications from their original
implementations to fit in the 40% regions. The customized
XPress9 compressor provides lossless data compression and
achieves 6% better compression ratio and 10x more through-
put than software based GZip compression with level 9 (the
best) optimization on a single Intel Xeon CPU core. The cus-
tomized openflow firewall provides 20x more throughput than
Linux IPTables and 3x more throughput than Click+DPDK
implementation which are both on Intel Xeon CPU. These two
applications are both throughput heavy, but aggregately they

6

have not exceeded DMA bandwidth. The peak load of com-
pressor and firewall are 10.6Gbps and 19.8Gbps, respectively,
while the underlying DMA bandwidth is 48Gbps on single
PCIe endpoint and 96Gbps on two PCIe endpoints. There-
fore, the scheduler (Section 3.2.3) in DMA virtualization is
reduced to round-robin sheduling.

We also tested application migration using resource allo-
cation framework. The process is performed as follows. The
service manager of the application (section 3.3) first makes mi-
gration decision.It then notifies agents on both source FPGA
and destination FPGA. The source agent notifies the running
accelerator to store its states into off-chip memory. Then the
source agent turns the accelerator off and transmits stored
states to destination FPGA. On the mean time, destination
agent loads accelerator image. Upon receiving the states from
source agent, destination agent turns the accelerator on and
the migration is completed. In our test, the migration time
is less than 1s for both above applications when source and
destination server are in the same rack, in which the image
loading time is around 70ms.

5 CONCLUSION
In this paper, we present the design of Feniks, an FPGA
operating system which provides infrastructure support to
facilitate cloud workload offloading. In addition to abstracted
interface, Feniks provides (1) development and runtime envi-
ronment for multiple accelerators to share an FPGA chip in an
efficient way; (2) direct access to server’s resource over PCIe
bus; (3) an FPGA resource allocation framework throughout
a datacenter. As a research project keeping improved, we be-
lieve the development of Feniks will benefit the use of FPGA
in cloud computing.

ACKNOWLEDGEMENT
We would like to thank Kun Tan, Larry Luo, Derek Chiou,
Andrew Putnam and Tong He for their initial exploration
which provides valuable experience for the system design.
We also would like to thank the anonymous reviewers for
their insightful and constructive comments.

REFERENCES
[1] 2016. NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect

(2016).
[2] 2017. AWS EC2 FPGA Hardware and Software Development Kit.

(2017). https://github.com/aws/aws-fpga
[3] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow.

2014. FPGAs in the Cloud: Booting Virtualized Hardware Accelerators
with OpenStack. 109–116.

[4] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. 2016. A cloud-scale acceleration
architecture. In MICRO 2016. IEEE, 1–13.

[5] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao
Chang, and Kun Wang. 2014. Enabling FPGAs in the Cloud. In CF
2014. ACM, New York, NY, USA, Article 3, 10 pages.

[6] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN
in the Public Cloud.. In NSDI. 315–328.

[7] Kermin Fleming, Hsin-Jung Yang, Michael Adler, and Joel Emer. 2014.
The LEAP FPGA operating system. In FPL 2014. IEEE.

[8] Jeremy Fowers, Joo-Young Kim, Doug Burger, and Scott Hauck. 2015.
A scalable high-bandwidth architecture for lossless compression on
fpgas. In FCCM 2015. IEEE, 52–59.

[9] Prabhat K Gupta. 2015. Xeon+ fpga platform for the data center. In
ICARL 2015.

[10] A. Ismail and L. Shannon. 2011. FUSE: Front-End User Framework
for O/S Abstraction of Hardware Accelerators. In FCCM 2011.

[11] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan
Kastner. 2015. RIFFA 2.1: A Reusable Integration Framework for
FPGA Accelerators. ACM Trans. Reconfigurable Technol. Syst. (2015).

[12] John H Kelm and Steven S Lumetta. 2008. HybridOS: runtime support
for reconfigurable accelerators. In FPGA 2008. ACM.

[13] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo,
Ningyi Xu, Yongqiang Xiong, and Peng Cheng. 2016. Clicknp: Highly
flexible and high-performance network processing with reconfigurable
hardware. In SIGCOMM 2016. ACM.

[14] E. Lubbers and M. Platzner. 2007. ReconOS: An RTOS Supporting
Hard-and Software Threads. In FPL 2007.

[15] Ashwin A. Mendon, Andrew G. Schmidt, and Ron Sass. 2009. A
Hardware Filesystem Implementation with Multidisk Support. Int. J.
Reconfig. Comput. 2009 (Jan. 2009).

[16] Rishiyur S. Nikhil. 2008. Bluespec: A General-Purpose Approach to
High-Level Synthesis Based on Parallel Atomic Transactions. Springer
Netherlands, Dordrecht, 129–146.

[17] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr,
Randy Huang, Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Sri-
vatsan, Duncan Moss, Suchit Subhaschandra, et al. Can FPGAs Beat
GPUs in Accelerating Next-Generation Deep Neural Networks?. In
FPGA 2017.

[18] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. 2014. SDF: Software-defined Flash for Web-scale
Internet Storage Systems. In ASPLOS 2014. ACM.

[19] Wesley Peck, Erik Anderson, Jason Agron, Jim Stevens, Fabrice Baijot,
and David Andrews. 2006. Hthreads: A computational model for
reconfigurable devices. In FPL 2006. IEEE.

[20] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, et al. 2014. A reconfigurable
fabric for accelerating large-scale datacenter services. In ISCA 2014.

[21] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017.
Accelerating pattern matching queries in hybrid CPU-FPGA architec-
tures. In ICMD 2017. ACM.

[22] Hayden Kwok-Hay So and Robert W Brodersen. 2006. Improving
usability of FPGA-based reconfigurable computers through operating
system support. In FPL 2006. IEEE.

[23] Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Bannazadeh, Alberto
Leon-Garcia, and Paul Chow. 2017. Enabling Flexible Network FPGA
Clusters in a Heterogeneous Cloud Data Center. In FPGA 2017. ACM.

[24] Steven Trimberger, Dean Carberry, Anders Johnson, and Jennifer Wong.
1997. A time-multiplexed FPGA. In FCCM 1997. IEEE.

[25] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. 2013. Apache hadoop yarn: Yet
another resource negotiator. In SoCC 2013. ACM.

[26] Peng Zhang, Muhuan Huang, Bingjun Xiao, Hui Huang, and Jason
Cong. 2015. CMOST: A System-level FPGA Compilation Framework.
In DAC 2015. ACM.

7

https://github.com/aws/aws-fpga

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Feniks FPGA Operating System
	3.1 Performance Isolation and Multi-tasking
	3.2 Accessing Server and Cloud Resources
	3.3 Support for FPGA Resource Allocation

	4 Preliminary Results
	4.1 Communication over PCIe
	4.2 Case Study

	5 Conclusion
	References

