
Fast and Compatible User-Space Container
Networking with Programmable NIC

Bojie Li
USTC and Microsoft Research

1. Motivation
Containers are an emerging cloud service for developers to
wrap up applications into isolated boxes. To simplify deploy-
ment, developers break large monolithic services into small
self-contained microservice containers, interconnected via
container network. For example, a Web application is typ-
ically built with a load balancer, Web application containers,
cache, search index, database and background data analytic
services. Each component is wrapped into a container and
they communicate via a virtual network, e.g., Linux bridge.

Due to extensive communication among containers, cur-
rently the OS kernel is the performance bottleneck for most
containerized applications. Our stress tests on NSC DNS
server, Redis, Nginx and lighttpd show that 78% to 92%
of CPU time is spent in container networking. The CPU
cost of container networking attributes to two factors, con-
nection setup and data transmission. With Linux network
stack, a CPU core can create 50K new connections per sec-
ond, mainly attributed to file descriptor and socket initializa-
tion. With 24 cores, the connection setup throughput only in-
creases to 6x [13]. This sub-linear scaling is due to lock con-
tention in the file system and network stack. For data trans-
mission, a context switch is required per send and recv sys-
tem call, and the network stack is involved even if the sender
and receiver are in a same server. As a result, a single-core
application can only process 300K network messages per
second [17]. These overheads kept many developers away
from containerizing performance-critical applications.

2. Background and Related Work
Recent years we see a trend of specializing operating system
for high performance. The network stack in an operating sys-
tem can be roughly divided into two layers: network packet
processing and application interface (e.g. socket, RDMA).

To accelerate network packet processing, FlexNIC [11]
redesigns NIC architecture to support flexible and high-
performance processing. E2 [15] and NetBricks [16] are
high performance packet processing systems using a pipeline
of dedicated cores. Corey [6] and Multikernel [4] achieve
multicore scalability by replacing shared memory coordina-
tion with explicit message passing among cores. FreeFlow [3]
achieves high performance container networking for long-
lived connections using user-space communication. Inter-
core message passing has limited efficiency. To receive a

message from a lockless shared-memory queue, the receiver
core needs to read non-cached data, because the cache has
been invalidated by the message sender. There is no instruc-
tion to directly copy data from one core’s private cache to
another core’s.

To translate application interface to network packets effi-
ciently, one line of work develops lightweight TCP/IP stacks
to provide socket-compatible APIs with high performance.
Netmap [18] and VALE [19] are high-performance user-
space network stacks with BSD-like API, but do not inte-
grate in the Linux file descriptor namespace. Fastsocket [13]
and F-stack [1] improves Linux socket performance and
scalability while keeping the most extent compatibility.
However, many Linux APIs are rarely used [20] and they
constitute a large portion of processing delay on the data
path [17]. TCP Chimney [14] offloads a part of network
stack to hardware.

The other line of work uses hardware (the NIC) to achieve
kernel-bypass networking between VMs or processes on
the same host. Arrakis [17] and IX [5] leverage hardware-
assisted virtualization and SR-IOV NICs to bypass kernel
coordination. Mellanox VMA [2] translates socket APIs into
RDMA verbs via a light-weight socket and network stack in
user space. When applying these designs to container net-
working, there are two challenges: (1) All packets traverse
through the NIC, while the NIC has limited hairpin process-
ing capacity and PCIe bandwidth. (2) The number of NIC
virtual functions (VF) is not enough to support each con-
tainer with a VF. This paper basically falls in this category
and solves the challenges using careful hardware-software
co-design.

After years of broken promises, the increasing gap be-
tween network speed and CPU processing capacity finally
makes programmable NICs deployed in data centers [12],
opening up new possibilities for network stack design.

3. Design
Our goal is to leverage hardware-software co-design to de-
velop a container networking system with both high perfor-
mance and compatibility with existing software.

Due to limited PCIe throughput, we leave the data plane
on the CPU and only process control messages via pro-
grammable NIC (FPGA). We use NIC as the center of co-
ordination instead of a dedicated core, because the NIC has



Figure 1: Container Networking with Programmable NIC.

much more processing capacity than a CPU core [12]. We
design the NIC to support three sets of functions:

1. A most frequently used subset of BSD socket semantics;

2. A pair of request and event queues per container process;

3. Epoll-compatible event dispatch.

Control plane on programmable NIC. As shown in
Figure 1, during container process initialization, it creates a
request queue and an event queue to the programmable NIC
(FPGA). The container sends requests to the NIC via request
queue, and receives events from the NIC via event queue.
Each queue resides in a pinned huge-page memory shared
with the NIC. When an application calls a control-plane
socket API (e.g. socket, listen, connect), it is sent to the NIC
via its request queue. Because a doorbell from host to a PCIe
device takes about 1 µs, we employ doorbell batching [10]
to amortize doorbell overhead.

Data plane on user-space CPU. During connection
setup, a region of shared huge-page memory is created be-
tween the sender and receiver containers. A lockless shared
memory queue is initialized in the shared memory space. Be-
cause Intel x86 architecture provides ordering guarantees on
write-after-write and read-after-write hazards [8], atomic in-
structions or memory barriers are not required for the single-
reader, single-writer queue. We only need to insert compiler
barriers to prevent the compiler from reordering critical in-
structions. Data-plane socket API calls (e.g. send, recv) are
processed in user space, bypassing the NIC. The data is first
copied from the sender buffer to the shared ring buffer, then
copied to the receiver buffer, which is optimal considering
semantics of BSD send and recv.

Compatible with existing software. In addition to high
performance, our solution is compatible with existing soft-
ware, does not require any modification to the Linux kernel,
and preserves isolation among containers. We modify the
Docker daemon to set a LD PRELOAD environment vari-
able to hook the standard C library (glibc) and POSIX thread
library (libpthread) of container processes.

The system calls regarding to pipe, socket, epoll and
process creation are redirected to our user-mode library. We

follow the design of LOS [9] and split the file descriptor
(FD) space to two parts, the lower half for kernel FDs, and
the higher half for user-mode FDs. System calls to kernel
FDs are passed through to the kernel, so the application can
still read/write files and communicate with processes and
hosts outside our system. System calls to user-mode FDs are
replaced by a request to the monitor process, sent via the
request queue. If the system call is blocking, it polls the event
queue for 1µs. The monitor process polls the request queues
of all containers in an infinite loop, therefore in most cases,
the monitor responds an event within 1µs, and the requester
proceeds without context switch. If the monitor is too busy
to respond during requester polling, call sched yield to put
the process to sleep.

Process and thread creation are monitored by the user-
mode library such that resources are duplicated for newly-
forked processes or cloned threads.

4. Preliminary Evaluation
Due to complexity in hardware development, we first built
a software prototype using a dedicated CPU core to process
control-plane messages. The core is assigned to a monitor
container. Request queues and event queues are created be-
tween monitor container and other containers.

We evaluate our software prototype on a Dell R720 server
with two Xeon E5-2650 v2 CPUs, 128 GiB DDR3 memory
and Archlinux kernel 4.11.9. Between two processes on two
cores in a same NUMA node, the lockless shared-memory
queue can transfer up to 27 M 64-byte messages per sec-
ond, 2.5x faster than a shared-memory queue using memory
barriers [7] and 8.4x faster than Linux socket. The round-
trip ping-pong delay on the queue is 0.25 µs, 50x faster than
Linux pipe. Furthermore, all these speed up comes without
any overall limitation. The throughput and latency does not
degrade if there are other queues on other cores.

Our prototype monitor container can process 12 M re-
quests per second. Given that each connection setup needs
3 requests (each socket, connect or accept call needs 1 re-
quest), up to 4 M local socket connections can be created
per second, 13x of Linux kernel and 6x of Fastsocket [13].
This throughput can be further scaled if we assign more CPU
cores to the monitor container. After connection setup, pack-
ets can be transfered via lockless shared memory queue. The
shared memory queue has 9x throughput and 60x lower la-
tency compared to Linux socket.

We are still working on the implementation with pro-
grammable NICs. NIC hardware has higher processing ca-
pacity than dedicated CPU cores. A NIC with PCIe Gen3
x16 can perform up to 160 M DMA requests per second,
6x compared with a CPU core which can only receive
26 M non-batched messages per second. Therefore, with
programmable NICs, the throughput of our design still has
much room for improvement.



5. Conclusion
There has been a long debate on where to implement net-
work stacks: hardware, kernel or user-space. With pro-
grammable NIC, hardware and software can work together
by separation of coordination-intensive control plane and
communication-intensive data plane. By offloading some
kernel functionalities to hardware as well as user-space, the
throughput of short-lived connections and the network delay
among containers have an order of magnitude improvement.

A key challenge in FPGA-based NIC design is PCIe
latency. With the advent of Xeon+FPGA platform, we
expect higher throughput and lower latency communica-
tion between CPU and FPGA, to enable more fine-grained
hardware-software co-design.

References
[1] High-performance network framework based on dpdk. URL

http://f-stack.org/.

[2] Mellanox vma. URL http://www.mellanox.com/
page/software_vma.

[3] FreeFlow: High Performance Container Networking, Novem-
ber 2016. ACM. ISBN 978-1-4503-4661-0/16/11.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: a new os architecture for scalable multicore sys-
tems. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 29–44. ACM, 2009.

[5] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. Ix: A protected dataplane operating sys-
tem for high throughput and low latency. In Proceedings of
the 11th USENIX Symposium on Operating System Design
and Implementation (OSDI), number EPFL-CONF-201671.
USENIX, 2014.

[6] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y.-h. Dai,
et al. Corey: An operating system for many cores. In OSDI,
volume 8, pages 43–57, 2008.

[7] U. o. C. Computer Laboratory. Ipc benchmark. URL
https://www.cl.cam.ac.uk/research/srg/
netos/projects/ipc-bench/.

[8] I. Corporation. Intel 64 and ia-32 architectures software de-
veloper manual, volume 3.

[9] Y. Huang, J. Geng, D. Lin, B. Wang, J. Li, R. Ling, and D. Li.
Los: A high performance and compatible user-level network
operating system. In Proceedings of the First Asia-Pacific
Workshop on Networking, pages 50–56. ACM, 2017.

[10] A. K. M. Kaminsky and D. G. Andersen. Design guidelines
for high performance rdma systems. In 2016 USENIX Annual
Technical Conference, page 437, 2016.

[11] A. Kaufmann, S. Peter, T. E. Anderson, and A. Krishna-
murthy. Flexnic: Rethinking network dma. In HotOS, 2015.

[12] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong,
and P. Cheng. Clicknp: Highly flexible and high-performance
network processing with reconfigurable hardware. In Pro-
ceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, pages 1–14. ACM, 2016.

[13] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi.
Scalable kernel tcp design and implementation for short-lived
connections. In ACM SIGPLAN Notices, volume 51, pages
339–352. ACM, 2016.

[14] S. Networking. Network protocol offloadintroducing tcp
chimney, 2004.

[15] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy,
L. Rizzo, and S. Shenker. E2: a framework for nfv applica-
tions. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 121–136. ACM, 2015.

[16] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker. Netbricks: Taking the v out of nfv. In OSDI,
pages 203–216, 2016.

[17] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe. Arrakis: The operating
system is the control plane. ACM Transactions on Computer
Systems (TOCS), 33(4):11, 2016.

[18] L. Rizzo. Netmap: a novel framework for fast packet i/o.
In 21st USENIX Security Symposium (USENIX Security 12),
pages 101–112, 2012.

[19] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual
machines. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies, pages
61–72. ACM, 2012.

[20] C.-C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter. A study
of modern linux api usage and compatibility: what to support
when you’re supporting. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems, page 16. ACM, 2016.

http://f-stack.org/
http://www.mellanox.com/page/software_vma
http://www.mellanox.com/page/software_vma
https://www.cl.cam.ac.uk/research/srg/netos/projects/ipc-bench/
https://www.cl.cam.ac.uk/research/srg/netos/projects/ipc-bench/

	Motivation
	Background and Related Work
	Design
	Preliminary Evaluation
	Conclusion

