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Kernel overhead dominates web 
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Our design: use dedicated coordination 
core to process IPC in user space

Bottleneck of kernel-based IPC
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IPC-Direct advantages
• High throughput

• Low latency

• Compatible with POSIX API (using LD_PRELOAD)

• Preserve process isolation

• No new hardware or kernel modification

No 

context 

switch,

better 

locality 

No lock overhead

RDMA

acceptconnect
many sockets over one RDMA connection

client

Core 1 Core 2

OS
Core 0

Sources of kernel overhead:

• Unnecessary processing in kernel

• Memory copy and context switch

• Distributed coordination under high contention

Scale to multiple servers with RDMA
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Two implementations of request queues Microbenchmarks
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Monitor polls from one request queue per process

Applications send to a shared request queue
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IPC-Direct latency vs. Linux socket
TCP socket IPC-Direct
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IPC-Direct tput vs. Linux
TCP socket IPC-Direct
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Throughput of  our lockless 

queue

Queue with lock Queue without lock
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CPU cores

Nginx connection setup (Estimate)
Linux 3.13 [1] IPC-Direct

Shared memory

Core 1 Core 2 Core 1 Core 2

Pros: No client contention

Cons: Waste polling when most processes are idle

Pros: Monitor receives requests more efficiently

Cons: Client contention in atomic operation

Discussion: Use SmartNIC as coordinator
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Overhead of  lock-based 

context switch [2]
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[1] Fastsocket, ASPLOS’16 [2] Paul Turner, User-level threads, Google


