
IPC-Direct: Fast and Compatible

Inter-Process Communication in User Space

SOSP’17 SRC #39
Bojie Li, Tianyi Cui, Zibo Wang, Lintao Zhang

Kernel overhead dominates web
service performance

78%

77%

87%

92%

22%

23%

13%

8%

LIGHTTPD

NGINX

REDIS

NSC DNS SERVER

Kernel time User time

Our design: use dedicated coordination
core to process IPC in user space

Bottleneck of kernel-based IPC

Lock contention

Context

switch

overhead

Kernel overhead of web services

Application

OS

Application

OS

Poor scalability

Application

OS

Application

OS

Traditional

Inter-process communication

with lock

Multikernel

Inter-process communication

with message passing

Application

OS

Application

OS

User space

monitor

process
Shared memory

IPC-Direct advantages
• High throughput

• Low latency

• Compatible with POSIX API (using LD_PRELOAD)

• Preserve process isolation

• No new hardware or kernel modification

No

context

switch,

better

locality

No lock overhead

RDMA

acceptconnect
many sockets over one RDMA connection

client

Core 1 Core 2

OS
Core 0

Sources of kernel overhead:

• Unnecessary processing in kernel

• Memory copy and context switch

• Distributed coordination under high contention

Scale to multiple servers with RDMA

monitor monitor

server

Two implementations of request queues Microbenchmarks

Shared
Buffer

Request metadata Event
metadata

Metadata

Metadata

Metadata

Shared
Buffer

Monitor polls from one request queue per process

Applications send to a shared request queue

Shared
Buffer

Shared
Buffer

Request metadata
metadata

Event
metadata

Metadata

0

0.2

0.4

0.6

0.8

1

1.2

2 cores 4 cores 8 cores 16 coresN
o
rm

a
liz

e
d

 t
hr

o
ug

hp
ut

Throughput of distributed vs.

centralized coordination
Distributed Centralized

11.04
12.46

0.33 0.33

0

5

10

15

Low High

R
TT

(U
S
)

Offered load

IPC-Direct latency vs. Linux socket
TCP socket IPC-Direct

3.44

26

6
4
-b

y
te

 m
e
ss

a
g
e

(M
o
p

/
s)

IPC-Direct tput vs. Linux
TCP socket IPC-Direct

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 w

it
h

6
4
-b

y
te

m

e
ss

a
g
e
 (
M

o
p

/
s)

Throughput of our lockless

queue

Queue with lock Queue without lock

0

500

1000

1500

2000

1 2 4 8 16Th
ro

ug
hp

ut
(K

 c
o
n
ns

 p
e
r

se
co

n
d
)

CPU cores

Nginx connection setup (Estimate)
Linux 3.13 [1] IPC-Direct

Shared memory

Core 1 Core 2 Core 1 Core 2

Pros: No client contention

Cons: Waste polling when most processes are idle

Pros: Monitor receives requests more efficiently

Cons: Client contention in atomic operation

Discussion: Use SmartNIC as coordinator

Application

OS

Application

OS

FPGA

PCIe DMA

Better

throughput,

Worse

latency

Core 1 Core 2

NIC

PCIe DMA

CPU SmartNIC

2.9

0.18

0

1

2

3

4

La
te

nc
y
 (
us

)

Overhead of lock-based

context switch [2]

Futex sched_yield
[1] Fastsocket, ASPLOS’16 [2] Paul Turner, User-level threads, Google

