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Kernel overhead dominates web Ouvur design: use dedicated coordination
service performance core to process IPC in user space
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Sources of kernel overhead:

Scale to multiple servers with RDMA
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Monitor polls from one request queue per process . PHIE
centralized coordination queue

Request Parser Dispatcher Event Generator W Distributed B Centralized o 30
! | Request metadata Event = =
; 1.2 .25
Monitor metadata o ;?r e
Process > 1 O 8'20
Service 208 =215
Procesd| | Process 1 Process 3 y 3 06 f 0.4
% 0. 38 -
Metadatal = -§,§ 5
Application DGTGDGT Application E 0.2 . ‘ J o £ ¢
Metadata Butfer | G O <
° Z F— B Queue with lock B Queue without lock
Request queue 2 cores 4 cores 8 cores 16 cores
Process 2 Nginx connection setup (Estimate) Overhead of lock-based
~eLinux 3.13 [1] —o-IPC-Direct context switch 2
. Data Data — 2000 4
Application 9 1500 — o
Metadata el - 9 23
2 91000 >
Request queue ol Q2
o 8_ 500 Qo
User Mode o 0 . Y~ T 0.18
| - (- :
Pros: No client contention = 5 ! 2 4 8 6 0 B
. . CPU cores B Futex M sched._yield
COI‘IS: qull'e pO”Ing When most pI’OCGSSGS dare |d Ie = [1] Fastsocket, ASPLOS™16 [2] Paul Turner, User-level threads, Google

IPC-Direct latency vs. Linux socket
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