Mﬁosoff h IPC-Direct: Fast and Compatible
esearc Inter-Process Communication in User Space

SOSP’17 SRC #39

Bojie Li, Tianyi Cui, Zibo Wang, Lintao Zhang

Kernel overhead dominates web Ouvur design: use dedicated coordination
service performance core to process IPC in user space

m Kernel time m User time ! ! ! !

Application [l Application 8 User space

REDIS 87% confext Shared memory [OFOCESS
NGINX 77% TQWi::h, Shared memory
errer
LIGHTTPD 78% 22% O35

locality Core | Core 2 Core O
No lock overhead

Kernel overhead of web services

Sources of kernel overhead:

Scale to multiple servers with RDMA

* Unnecessary processing in kernel

. client server
* Memory copy and context switch ~ ~N
* Distributed coordination under high contention connect| | ' - C°""“"°/”E accept
Bottleneck of kernel-based IPC] | ,]
Core 1 Core 2 Core 1 Core 2 | @
Context \- onior /
Application § Application b Application § Application
switc .
0OS OS P OS | OS IPC-.Dlrect advantages
* High throughput
a * Low latency
Lock contention Poor scalability « Compatible with POSIX API (using LD_PRELOAD)
Traditional Multikernel . < olgti
Inter-process communication Inter-process communication Preserve process isolation
with lock with message passing * No new hardware or kernel modification
Two implementations of request queues Microbenchmarks
Throughput of distributed vs. Throughput of our lockless

Monitor polls from one request queue per process . PHIE
centralized coordination queue

Request Parser Dispatcher Event Generator W Distributed B Centralized o 30
! | Request metadata Event = =
; 1.2 .25
Monitor metadata o ;?r e
Process > 1 O 8'20
Service 208 =215
Procesd| | Process 1 Process 3 y 3 06 f 0.4
% 0. 38 -
Metadatal = -§,§ 5
Application DGTGDGT Application E 0.2 . ‘ J o £ ¢
Metadata Butfer | G O <
° Z F— B Queue with lock B Queue without lock
Request queue 2 cores 4 cores 8 cores 16 cores
Process 2 Nginx connection setup (Estimate) Overhead of lock-based
~eLinux 3.13 [1] —o-IPC-Direct context switch 2
. Data Data — 2000 4
Application 9 1500 — o
Metadata el - 9 23
2 91000 >
Request queue ol Q2
o 8_ 500 Qo
User Mode o 0 . Y~ T 0.18
| - (- :
Pros: No client contention = 5 ! 2 4 8 6 0 B
. . CPU cores B Futex M sched._yield
COI‘IS: qull'e pO”Ing When most pI’OCGSSGS dare |d Ie = [1] Fastsocket, ASPLOS™16 [2] Paul Turner, User-level threads, Google

IPC-Direct latency vs. Linux socket

B TCP socket M |PC-Direct

Applications send to a shared request queue IPC-Direct tput vs. Linux

B TCP socket ®IPC-Direct

15
Request Parser Event Generator 11.04 12.46 0 26
v o
Request metadata Event 810 2 &
Monitor = <
Shared Request queue metadata & 5 E o
Process 0.33 0.33 L <
————————— R i i 0) = 3.44
Service Low High < I
0
Process || [Process | Process 3 Y Offered load

Event queue

Metadatd| Discussion: Use SmariNIC as coordinator

L oicoion RN o IR Acoicoion
Process 2 Application il Application
Better
L Date throughput, PCle DMA
urrer E—
Worse PCle DMA
User Mode lat
. . . . arency
Pros: Monitor receives requests more efficiently ON O3S

. Core 1 Core 2
Cons: Client contention in atomic operation CPU SmartNIC

