Microsoft[®] Research

IPC-Direct: Fast and Compatible **Inter-Process Communication in User Space** SOSP'17 SRC #39

Bojie Li, Tianyi Cui, Zibo Wang, Lintao Zhang

Kernel overhead dominates web service performance

Sources of kernel overhead:

- Unnecessary processing in kernel
- Memory copy and context switch
- Distributed coordination under high contention

Bottleneck of kernel-based IPC

Our design: use dedicated coordination core to process IPC in user space

Scale to multiple servers with RDMA

COLE I					
Application	Application	Context switch	Application	Application	
OS	OS	overhead	OS	OS	
Lock contention			Poor scalability		
Traditional			Multikernel		
Inter-process communication		ion In	Inter-process communication		
with lock			with message passing		

Two implementations of request queues

Monitor polls from one request queue per process

IPC-Direct advantages

- High throughput
- Low latency

Throughput

Y)

- Compatible with POSIX API (using LD_PRELOAD)
- Preserve process isolation
- No new hardware or kernel modification

Microbenchmarks

Core 2

CPU

SmartNIC

Core 1

User Mode

Pros: No client contention

Cons: Waste polling when most processes are idle

Applications send to a shared request queue

User Mode

Pros: Monitor receives requests more efficiently Cons: Client contention in atomic operation