
ClickNP: Highly flexible and High-performance Network
Processing with Reconfigurable Hardware

Bojie Li§† Kun Tan† Layong (Larry) Luo‡ Yanqing Peng•† Renqian Luo§†

Ningyi Xu† Yongqiang Xiong† Peng Cheng† Enhong Chen§
†Microsoft Research §USTC ‡Microsoft •SJTU

{v-bojli, kuntan, laluo, v-reluo, ningyixu, yqx, pengc}@microsoft.com, cheneh@ustc.edu.cn

1. INTRODUCTION
Highly flexible software network functions are critical compo-

nents to enable multi-tenancy in cloud environments. However,
software packet processing on a commodity server has limited ca-
pacity and induces high latency. While software network functions
can be scaled out by using more servers, doing so adds significant
cost. This demo targets to accelerate network functions with pro-
grammable hardware, i.e., FPGA, which is now a mature technol-
ogy and inexpensive for datacenter deployment.

Compared to CPU or GPU, FPGAs have a much lower clock fre-
quency and a smaller memory bandwidth. However, unlike CPU or
GPU, which has only limited cores, and thus limited parallelism,
FPGAs have massive parallelism built-in. Modern FPGAs may
have millions of logic gates, hundreds Kbit registers, tens of Mbits
of BRAM, and thousands of DSP blocks, and in theory, each of
them can work in parallel. Therefore, to achieve high performance,
a programmer must fully utilize the massive parallelism inside FPGA.

Our goal is to build a versatile, high performance network func-
tion platform with FPGA-acceleration. First, the platform should be
fully programmed using high-level languages. FPGA is predomi-
nately programmed using low-level hardware description languages
(HDL), which is hard to program and difficult to debug, therefore
almost not accessible for most software programmers. Second, we
should support a modular architecture for packet processing. Third,
network functions should handle packets flowing at the line-rates
of 40/100Gbps with ultra-low latency. Finally, FPGA may not
be suitable for all tasks and we should support fine-grained pro-
cessing separation between CPU and FPGA, which requires high-
performance CPU-FPGA communication.

This demo presents ClickNP, a FPGA-accelerated platform for
highly flexible and high-performance network functions with com-
modity servers. ClickNP is highly flexible as it is completely pro-
grammable using high-level C-like languages, and exposes a famil-
iar modular programming abstraction that resembles Click Modular
Router [2]. ClickNP is also high-performance. Compared to exist-
ing software network functions, with FPGA, ClickNP improves the
throughput by 10x, but also reduces the latency by 10x.

We have implemented the ClickNP tool-chain, which can inte-
grate with various commercial HLS tools. We implemented and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934897

optimized about 100 common elements and used them to build
three demo applications: (1) An Open vSwitch that supports L2
network virtualization with NVGRE. Additionally, the switch sup-
ports packet classification for firewall and strict priority queue for
scheduling. (2) A stateful L4 load balancer that supports up to 32M
concurrent flows and can accept 10M new flows per second. (3)
As a final demo, we show that ClickNP is rather a general comput-
ing platform. We show a face detector in live video stream with
convolutional neural network (CNN).

2. SYSTEM ARCHITECTURE
ClickNP provides a modular architecture and the basic process-

ing module is called an element. A ClickNP element has follow-
ing properties: (1) Local states that are only accessible inside the
element. (2) Input and output ports. (3) Handler functions: (a)
an initialization handler, which is called only once when the ele-
ment starts, (b) a processing handler, which is continuously called
to check input ports and process the available data, and (c) a sig-
nal handler, which receives and processes the commands (signals)
from the manager thread in the host program.

An output port of an element can connect to an input port of an-
other element through a channel. In ClickNP, a channel is basically
a FIFO buffer that is written to one end and read from the other end.

The ClickNP tool-chain contains a ClickNP compiler as front-
end (e.g., Visual Studio or GCC), and a C/C++ compiler and an
HLS tool (e.g., Altera OpenCL SDK or Xilinx Vivado HLS) as
back-end. To write a ClickNP program, a developer needs to divide
her code into three parts: (1) A set of elements, each of which im-
plements a conceptually simple operation, (2) A configuration file
that specifies the connectivity among these elements and whether
an element runs on host or FPGA, and (3) A host manager that
initializes each element and controls their behavior during the run-
time, e.g., according to the input of administrators. These three
parts of source code are fed into the ClickNP compiler and trans-
lated into intermediate source files for both host program and FPGA
program. Each channel between a host element and a FPGA ele-
ment is compiled to a logical slot in PCIe DMA, which provides
high-throughput (up to 25 Gbps) and low-latency (<2µs) streaming
interface. Signals are sent through a special PCIe slot. The host pro-
gram can be directly compiled by a normal C/C++ compiler, while
the FPGA program is synthesized using commercial HLS tools.

ClickNP exploits all levels of parallelism in FPGA to speed up
processing. First, packets flow from one element to another along
a processing pipeline to exploit task parallelism. Bottleneck ele-
ments in the pipeline are duplicated to provide higher throughput
by exploiting data parallelism. Second, as HLS tools schedule op-
erations in an element into pipeline stages, we optimize elements
to ensure each handler function can be fully pipelined, i.e., process
a datum in every clock cycle. To achieve this maximal throughput,

we (1) use registers whenever possible because registers have no
latency, while memory access has one cycle latency; (2) Leverage
delayed write and memory scattering techniques to remove read-
write memory dependency; (3) Completely unroll loops to trade
area for speed; (4) Balance pipeline stages by offloading slow path
(e.g. DRAM access) to another element.

3. DEMONSTRATION

3.1 Open vSwitch
Network virtualization is critical to multi-tenant data centers. Soft-

ware virtual switches on CPU, e.g. Open vSwitch [4] cannot catch
up with 40Gbps line-rate for small packets. This demo showcases a
ClickNP implementation of major functions in Open vSwitch. Each
lookup table and action is an element in ClickNP. Parsed packet
header fields, Openflow tags and intermediate states during table
lookup are carried in metadata channels among elements. Packet
data is carried in flit channel beside metadata channel. Each packet
is processed independently in pipeline, and there is no caching for
“known flows”.

The FPGA processes packets bump-in-the-wire between host NIC
and the top-of-rack (ToR) switch. One Ethernet port of the FPGA is
connected to the ToR switch, the other Ethernet port of the FPGA
is connected to the host NIC. VMs are configured with SR-IOV
NIC interfaces. Packets for different VMs are identified by VLAN
tags. Packets to another VM within same host is loop-backed with
VLAN tag changed. Packets to ToR switch are encapsulated with
NVGRE header according to address mapping in tenant network.
Packets from ToR switch are decapsulated, applied VLAN tag and
forwarded to NIC.

Besides conventional OVS functions, to show the flexibility of
ClickNP, we implement a strict priority scheduler as an Openflow
action to enable pFabric [1] scheduling. In demo scenario, two
sender VMs on a same physical host transfer data to a receiver VM
on another physical host in the same rack. One sender VM sends
short flows, while the other sends long flows. A TCP option en-
codes total flow size in each packet. If no scheduling is performed
in Open vSwitch, the egress queue to ToR is a drop-tail FIFO. When
pFabric scheduling is turned on for ToR egress queue, packets from
short flows will have higher priority and less likely to be dropped.
As a result, the flow completion time (FCT) of short flows will im-
prove greatly, while the 40G link is still fully utilized.

The demo OVS has four Openflow tables in a pipeline for packet
classification. As in Openflow, tags can be pushed and popped
within the pipeline, which allows efficient representation of IP and
port sets, e.g. drop packets from intranet IP set to prohibited port
set. First two Openflow tables are HashTCAM with 16K entries and
at most 16 distinct bit-masks. HashTCAM divides the table space
into 16 1K hash tables, each of which associated with a bit-mask.
Other two tables are BRAM-based true TCAM with 1K entries. It
partitions 104-bit key into 13 8-bit words. Each word corresponds
to 28 bit vectors indicating match result of each rule against ev-
ery possible word. The Openflow tables can update 300K rules per
second via signals without impacting data plane throughput.

3.2 Stateful L4 Load Balancer
The Open vSwitch is stateless. In this demo, we show that a

stateful network function can also be easily implemented. We pick
L4 load balancer as an example, as it requires all packets from a
same flow be forwarded to a same backend server (DIP), and the
load balancing policy may be more complex than ECMP. This demo
showcases stateful packet processing with a Layer-4 load balancer
corresponding to MUX in Ananta [3]. A state manager looks up

flow 5-tuple to determine flow state. For the first packet of each
flow, an element DIPAlloc allocates a backend server according to
load balancing policy. If a second packet comes before allocation
is done, the packet is dropped to avoid duplicate allocation. For re-
maining packets of the flow, backend server index is extracted from
flow state. Flow state is invalidated when it receives a FIN packet,
or timeout occurs. FPGA encapsulates an IP-in-IP header to direct
the packet to assigned backend server. We run the DIPAlloc element
on CPU because the allocation policy is potentially complex. All
other elements run on FPGA for high throughput and low latency.

The state manager needs 32 bytes per flow to hold 5-tuple, times-
tamp and backend server index. Flow entries are saved in a hash
table with 64M slots, consuming 2GB of DRAM. The hash table
uses linear lookup to resolve conflicts. To speedup flow lookup, we
maintain a 4-way associative flow cache in BRAM with 16K cache
lines, replaced using Least-Recently Used (LRU) algorithm.

In this demo, synthetic TCP flows are generated by ClickNP
TrafficGen in another FPGA. The host program of TrafficGen con-
trols offered packet rate, throughput, number of concurrent flows
and flow size distribution. The host program of L4 load balancer
shows processed packet rate, throughput, average latency, total num-
ber of flows and flow arrival rate.

We also demonstrate debugging an element on host CPU. We first
annotate the element in question with “host” in ClickNP configura-
tion file, then add some debug prints in the element, re-compile, and
the element in question will run on host CPU and print to console.

3.3 Face Detection and Alignment with CNN
In addition to network processing, ClickNP is a general frame-

work for joint CPU-FPGA processing. This demo showcases face
detection and alignment [5] implemented with ClickNP. RGB im-
age streams from web camera to host elements that perform face
detection using haar-like features, then streams to FPGA elements
that perform face alignment using a 9-layer convolutional neural
network (CNN). Finally detection result is streamed back to host.
Each convolution layer and FC layer is implemented as an element
in ClickNP. Parameters are stored in DRAM with tiling to leverage
sequential read for throughput. An image double buffer in BRAM
before each layer allows parallel communication and computation.

Video from Web camera is streamed to the CPU via USB ca-
ble. Host elements run on CPU and stream intermediate results to
FPGA elements via PCIe I/O channnel. Classification results are
transferred back to the host program via PCIe I/O channel.

4. REFERENCES
[1] M. Alizadeh et al. pfabric: Minimal near-optimal datacenter

transport. In Proceedings of the ACM SIGCOMM 2013
Conference, SIGCOMM ’13, pages 435–446, New York, NY,
USA, 2013. ACM.

[2] E. Kohler et al. The click modular router. ACM Transactions
on Computer Systems (TOCS), 18(3):263–297, 2000.

[3] P. Patel et al. Ananta: Cloud scale load balancing. In
Proceedings of the ACM SIGCOMM 2013 Conference,
SIGCOMM ’13, pages 207–218, New York, NY, USA, 2013.
ACM.

[4] B. Pfaff et al. The design and implementation of open vswitch.
In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 117–130, 2015.

[5] J. Qiu et al. Going deeper with embedded fpga platform for
convolutional neural network. In Proceedings of the 2016
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’16, pages 26–35,
New York, NY, USA, 2016. ACM.

5. DEMO REQUIREMENTS
FPGA needs to run in a server which is hard to be shipped to the

conference. So we will connect to our demo servers in Beijing via
remote desktop from our laptops. We will prepare videos for all
demos in case of network failure.

For the face detection demo, we may bring a credit-card size SoC
board and a Web camera which are connected to USB ports of our
laptop and do not require separate power supply.

In addition to the default demo settings (table space and a poster
board), we hope to have:

• Wired Internet connection for stable remote desktop connec-
tion.

• Two monitors to show the audience with larger screen. (Better
to have HDMI interface so that we do not buy HDMI to VGA
converters.)

Space needed: Table space for two laptops and two monitors.
Demo setup time: We wish to test network connectivity at the

scene before the day of demo. If network connectivity is good, we
can setup the demo in 30 minutes.

Thanks for your support!

