
Near-Optimal Total Order Message
Scattering in Data Center Networks

Gefei Zuo
USTC and Microsoft Research

1. Motivation & Related work
Distributed transaction processing is an important workload
in data centers. One line of work [5, 7, 15] use locks to pro-
tect from conflicts among concurrent transactions. Clearly,
for a contented object, the lock must be held for a network
RTT per transaction, limiting the transaction throughput to
1/RTT [8]. The other line of work, optimistic concurrency
control [9] assigns a logical timestamp to each transaction
and orders transactions by the timestamps. A transaction
needs rollback when a node receives a late write that con-
flicts with a previous read [4]. If the network has an ordering
property to ensure transactions are received in strict times-
tamp order, single round-trip transactions can be processed
without locks and rollbacks (in the absence of failure) [2].

Our work follows the trend of co-designing distributed
systems with network layer [10, 12]. We propose total order
message scattering to ensure each receiver processes trans-
action messages in timestamp order, so that each transaction
is processed atomically. On the sender side, send(messages)
scatters a group of messages with an automatically generated
unique timestamp. Each message is a tuple of application
data and a recipient. Transaction processing requires scatter-
ing different messages to different receivers atomically, and
each message may span multiple packets. Mostly-Ordered
Multicast [12] and NOPaxos [10] cannot guarantee ordering
of multi-packet messages. Furthermore, [10, 12] require a
centralized switch or sequencer, while we hope to leverage
multiple shortest paths to improve network utilization. On
the receiver side, recv() receives a message and returns data
and sender. The messages are guaranteed to be delivered to
the application in increasing timestamp order.

Because packet loss in data center networks with care-
fully engineered hop-by-hop flow control or end-to-end con-
gestion control are rare [12], we follow the end-to-end prin-
ciple in system design [13] and leave packet loss detection
and recovery to applications, as in [10, 12].

2. Design
Delivering messages in timestamp order would be trivial if
the network has bounded delay and the clocks are perfectly
synchronized. Each sender can assign message timestamp
by physical time and each receiver can buffer incoming mes-
sages, wait this bounded delay, reorder incoming messages
and deliver them to the application. However, bounded de-

lay in decentralized data center networks is impractical due
to traffic burstiness [11]. Instead of static bounded delay,
we provide dynamic bounded delay by providing a dynamic
lower bound of message timestamps in the network.

When a receiver R receives an updated timestamp lower
bound (TSLB)M , it can safely deliver messages with times-
tamps below M , because R won’t receive any messages be-
low M . To derive the TSLB, we consider an example with
two senders S1, S2 and one receiver R connected via a net-
work switch S. When R receives timestamp T1 from S1

and T2 from S2, it can set TSLB M = min(T1, T2) and
safely process messages with timestamp below M , because
timestamps from each sender grow monotonically. A live-
ness problem would occur if S1 keeps sending and S2 has
nothing to send. T2 would stop increasing, block M as well.
To make sure receivers can distinguish delayed messages
and idle senders, an idle sender needs to send beacon mes-
sages to receivers periodically.

For a network with N senders and N receivers, it would
result in N2 beacon messages and clearly cannot scale to
large distributed services. Fortunately, network switches in
modern data centers have some computation power. P4 pro-
grammable switch [3] can do customized processing on each
network packet; Many commodity switches [1] also have
general-purpose CPUs to do control-plane processing.

We aggregate timestamp lower bounds hierarchically in
the data center network: beacon messages are sent to the
switches instead of receivers. As long as there is no loop in
the network, the timestamp information can be propagated
layer-to-layer. See Figure 1 for an example. When switch
receives a packet from S1 or S2, T1 or T2 is updated accord-
ingly, so is TSLB. Switch then sends the updated TSLB to
receivers via beacon packets. We assume that each network
path has FIFO property. Based on that, when a beacon packet
M is transferred on a path Pi between switch and Ri, all
data packets on Pi transferred after M is guaranteed to have
a higher timestamp. This ordering property between beacon
and data packets is preserved hop-by-hop in the network.

Switch processing. With programmable switches, TSLB
can be an additional field in the packet header. Since each
data packet carries both message timestamp and TSLB on
the network link, dedicated beacon packets are no longer
needed when network link is not idle.

For switches without per-packet processing capability,
the end hosts can send beacon messages periodically to



Figure 1: Two senders(S1,S2) and two receivers(R1,R2)
connect via a switch. The switch maintains the TSLB and
one timestamp register per port (T1, T2). Beacon packets are
labeled MIN here.

the CPU port of switches. The switch CPU can process
the beacon messages and send to next-hop switches. The
data packets are forwarded by the switch fabric directly. As
long as we ensure the ingress and egress queues for data
and beacon packets are shared, the ordering property among
beacon and data packets is preserved. The processing delay
introduced by switch CPU would slack TSLB and increase
message delivery latency.

Timestamp generation. To minimize reordering delay,
received messages’ timestamp should be as close as possi-
ble. The main reason of the outliers is the delay variance
of network paths, especially the last-hop software process-
ing delay introduced by OS network stacks and hypervisors.
In modern data centers, the delay on end hosts is typically
much larger and varying than the delay in network [10, 11].

We propose a logical timestamp generation scheme using
feedback control, which does not require clock synchroniza-
tion. When an end host joins the system, it asks its topolog-
ical nearest neighbor in the system for a latest timestamp to
register with the uplink switch. As long as the timestamp is
greater than last TSLB on the switch, admission is granted
and the switch will take the newcomer into account when
calculating next TSLB.

When a message is received, the receiver measures the
difference ∆ between message timestamp and the receiver’s
TSLB. It also maintains an average ∆ of recent messages.
When the application sends an ACK for this message, the
difference δ = ∆ − avg(∆) is piggybacked to the ACK
message. If the application does not send an ACK in a
certain time, the difference information is discarded. The
sender then adjusts its logical clock speed c according to δ:
c = c− α · δ, where α is a positive parameter.

Beacon interval. The selection of beacon interval is a
trade-off between network overhead and message delivery
delay. We address this issue with three parameters.Min bea-
con interval is the minimum time between broadcasting
two beacon messages. When the TSLB is kept unchanged
for max beacon interval, it broadcasts a beacon message.
The timeout is to prevent a failure node from blocking the
whole network. Upon timeout, the switch would not take the
ingress link’s timestamp into account and block its traffic
to ensure no data packets with inconsistent timestamps pass
through.

Network overhead optimality. With a programmable
switch, TSLB is piggybacked to data packets whenever the
network link is not idle. Delay feedback is piggybacked
to application-layer ACK messages. Except for new node
joining handshakes and beacons on idle links, no additional
packets are generated for total order message scattering.

Reordering delay optimality. Assuming hosts send
packets continuously via programmable switches, the re-
ordering delay, measured by the time from receiving a data
packet to receiving a higher TSLB, converges to the am-
plitude of delay fluctuations among multiple network paths
according to the timestamp feedback control. An idle host
needs to send beacons for the network to know it is idle in
the beacon period, increasing the reordering delay by beacon
interval. With software processing on commodity switches,
there is one more factor: switch software processing delay,
which is a trade-off between delay and message complexity.

3. Preliminary Evaluation
We evaluate our design by a testbed emulating Figure 1,
including two PowerEdge R730 servers with Mellanox
ConnectX-4 NIC and an Arista DCS-7060CX-32S-F switch
with AMD GX-424CC 4-core CPU. Using Linux kernel net-
work stack, a single CPU core can process beacon messages
at 70K packets per second (pps) and 100 µs delay. To process
beacons from 32 ports, the minimal beacon interval is 1 ms.
In the future, we plan to improve beacon processing perfor-
mance with libpcap or Netfilter, and simulate performance
with P4 switches.

4. Conclusion
This paper presents total order message scattering, an or-
dered unreliable distributed message delivery service for
lockless transaction processing. This service works by hi-
erarchically accumulating a timestamp lower bound on each
network path. It has three assumptions on the network: (1)
network paths should be loop-free; (2) packets on the same
path should be transferred in order; (3) switches are pro-
grammable or have a CPU port. Our scattering is close to
optimal in terms of both reordering delay and network over-
head. We plan to implement lockless transaction process-
ing with total order message scattering and run performance
benchmarks [6, 14, 16].



References
[1] Arista eos. URL https://www.arista.com/en/

products/eos.

[2] H. Attiya and J. L. Welch. Sequential consistency versus lin-
earizability. ACM Transactions on Computer Systems (TOCS),
12(2):91–122, 1994.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Vargh-
ese, et al. P4: Programming protocol-independent packet pro-
cessors. ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[4] M. J. Carey and W. A. Muhanna. The performance of mul-
tiversion concurrency control algorithms. ACM Transactions
on Computer Systems (TOCS), 4(4):338–378, 1986.

[5] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and
general distributed transactions using rdma and htm. In Pro-
ceedings of the Eleventh European Conference on Computer
Systems, page 26. ACM, 2016.

[6] T. T. P. COUNCIL. Tpc-c benchmark v5. URL http:
//www.tpc.org/tpcc/.

[7] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast,
scalable and simple distributed transactions with two-sided
(rdma) datagram rpcs. In OSDI, pages 185–201, 2016.

[8] A. K. M. Kaminsky and D. G. Andersen. Design guidelines
for high performance rdma systems. In 2016 USENIX Annual
Technical Conference, page 437, 2016.

[9] H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database Systems
(TODS), 6(2):213–226, 1981.

[10] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.
Ports. Just say no to paxos overhead: Replacing consensus
with network ordering. In OSDI, pages 467–483, 2016.

[11] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, D. Zats, et al. Timely:
Rtt-based congestion control for the datacenter. In ACM
SIGCOMM Computer Communication Review, volume 45,
pages 537–550. ACM, 2015.

[12] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishna-
murthy. Designing distributed systems using approximate
synchrony in data center networks. In NSDI, pages 43–57,
2015.

[13] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end ar-
guments in system design. ACM Transactions on Computer
Systems (TOCS), 2(4):277–288, 1984.

[14] T. H.-S. TEAM. Smallbank benchmark. URL
http://hstore.cs.brown.edu/documentation/
deployment/benchmarks/smallbank/.

[15] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using rdma and htm. In Pro-
ceedings of the 25th Symposium on Operating Systems Prin-
ciples, pages 87–104. ACM, 2015.

[16] A. Wolski. Tatp benchmark description (version 1.0), 2009.

https://www.arista.com/en/products/eos
https://www.arista.com/en/products/eos
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://hstore.cs.brown.edu/documentation/ deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/ deployment/benchmarks/smallbank/

	Motivation & Related work
	Design
	Preliminary Evaluation
	Conclusion

