
1Pipe: Scalable Total Order Communication
in Data Center Networks

Bojie Li
Huawei Technologies

Gefei Zuo
University of Michigan

Wei Bai
Microsoft Research

Lintao Zhang
BaseBit Technologies

ABSTRACT
This paper proposes 1Pipe, a novel communication abstraction that
enables different receivers to process messages from senders in a
consistent total order. More precisely, 1Pipe provides both unicast
and scattering (i.e., a group of messages to different destinations) in
a causally and totally ordered manner. 1Pipe provides a best effort
service that delivers each message at most once, as well as a reliable
service that guarantees delivery and provides restricted atomic
delivery for each scattering. 1Pipe can simplify and accelerate many
distributed applications, e.g., transactional key-value stores, log
replication, and distributed data structures.

We propose a scalable and efficient method to implement 1Pipe
inside data centers. To achieve total order delivery in a scalable
manner, 1Pipe separates the bookkeeping of order information from
message forwarding, and distributes the work to each switch and
host. 1Pipe aggregates order information using in-network compu-
tation at switches. This forms the “control plane” of the system. On
the “data plane”, 1Pipe forwards messages in the network as usual
and reorders them at the receiver based on the order information.

Evaluation on a 32-server testbed shows that 1Pipe achieves
scalable throughput (80M messages per second per host) and low
latency (10𝜇s) with little CPU and network overhead. 1Pipe achieves
linearly scalable throughput and low latency in transactional key-
value store, TPC-C, remote data structures, and replication that
outperforms traditional designs by 2∼20x.

CCS CONCEPTS
•Networks → In-network processing;Data center networks;
• Computer systems organization → Reliability;

KEYWORDS
Total Order Communication, CATOCS, Data Center Networks, In-
Network Processing

ACM Reference Format:
Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang. 2021. 1Pipe: Scalable Total
Order Communication in Data Center Networks. In ACM SIGCOMM 2021
Conference (SIGCOMM ’21), August 23–28, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3452296.3472909

This work was done when all authors were with Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472909

S1→R1 S1→R2 S2→R2 S2→R1

S1

S2

Sn

…

R1

R2

Rn
…

Figure 1: 1Pipe abstraction.

1 INTRODUCTION
The lack of total order communication often complicates distributed
system design. For example, when a host atomically reads or writes
multiple objects on different remote hosts, there is no guarantee
that the messages arrive at different remote hosts at the same time,
so, locks are often required to achieve consistency. As another
example, multiple shards of a distributed database generate logs to
multiple replicas, and each replica may receive logs from the shards
in a different interleaving ordering, thus violating data consistency.

As a reaction to this complexity, we propose 1Pipe, a commu-
nication primitive that provides “one big pipe” abstraction in a
data center network (DCN). As Figure 1 shows, messages are sent
in groups and serialized in a virtual pipe, which enables different
receiver processes to deliver messages from sender processes in
a consistent order. More precisely, 1Pipe resembles Causally and
Totally Ordered Communication Support (CATOCS) [25]: (1) mes-
sages are totally ordered, ensuring that they are delivered in the
same order to all receivers; (2) messages are delivered obeying the
causal order in the Lamport logical clock sense [63]. In addition to
unicast, 1Pipe also supports scattering, which groups multiple mes-
sages to different receivers at the same position of the total order.
Different from traditional multicast, each message in a scattering
has distinct content and destination. Users do not need to define
multicast channels or groups because the network is a big CATOCS
channel.

1Pipe can achieve distributed atomic multi-object read and write
with a single scattering because they are delivered at the same
logical time. Replication in 1Pipe takes one round-trip time (RTT).
1Pipe also provides a total ordering of communication events, thus
reducing fences and improving concurrency of distributed systems.

1Pipe seems to require a central serialization point, which is not
scalable. In this work, we propose a scalable and efficient implemen-
tation of 1Pipe in a DCN, where the topology is regular [43, 67],
and switches have generally good programmability. Our principle
is to co-design end hosts with the underlying DCN. We synchronize
the clocks on hosts and ensure they are non-decreasing. The sender
attaches the same timestamp to each packet in a unicast message
or scattering. Each receiver delivers messages in non-decreasing
timestamp order.

At its core, 1Pipe separates the bookkeeping of order information
from message forwarding. 1Pipe forwards timestamped packets as
usual in the network, and buffers them at the receiver side. The
key challenge is to let a receiver know that all the packets below a
certain timestamp have arrived. To this end, we introduce a barrier

https://doi.org/10.1145/3452296.3472909
https://doi.org/10.1145/3452296.3472909

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang

timestamp on each link, which is essentially the lower bound of the
timestamps of all future arrival packets. Each switch aggregates
barrier information of all the ingress links to derive the barrier
for all the egress links. In this way, barriers propagate in the DAG
(Directed Acyclic Graph) network along with packet forwarding,
and the receiver can deliver the messages with timestamps below
the barrier in order. If some hosts or links are temporarily idle, we
periodically generate hop-by-hop beacon packets carrying barrier
information.

Regarding packet losses and failures, 1Pipe provides a best effort
service in which lost messages are not retransmitted; and a reliable
service in which a message is guaranteed to be delivered if sender
and all receivers in the scattering do not fail. When a host or switch
fails, reliable 1Pipe ensures restricted failure atomicity: either all
or none messages in a scattering are delivered unless a receiver
fails permanently or network partitions. Reliable 1Pipe uses a two-
phase commit (2PC) approach, where the first phase is end-to-
end packet loss recovery, and the second phase aggregates commit
barriers through the network. It relies on a highly available network
controller to coordinate failure handling, and allows applications
to customize failure handling via callbacks. Reliable 1Pipe adds
one round-trip time (RTT) compared to best effort 1Pipe. We will
show in Sec.2.2 that best effort 1Pipe can achieve replication and
read-only distributed atomic operations without the extra RTT of
reliable 1Pipe.

We implement three incarnations of 1Pipe on network devices
with different programming capabilities: programmable switching
chips [4, 45] that can support flexible stateful per-packet processing,
switch CPUs, and host CPUs in case that switch vendors do not
expose accesses to switch CPUs.

We evaluate 1Pipe in a 32-server cluster with 10 switches and 3-
layer fat-tree topology. 1Pipe achieves linearly scalable throughput
with 512 processes, achieving 5M messages per second per process
(80M msg/s per host). Best effort 1Pipe adds up to 10 𝜇s delay to
message delivery, while reliable 1Pipe adds up to 21 𝜇s. 1Pipe has
robust performance under packet loss, and can recover from failures
in 50∼500 𝜇s. 1Pipe only needs 0.3% network bandwidth overhead
and a CPU core per switch for periodic beacons.

As case studies, first, 1Pipe scales linearly for a transactional
key-value store (KVS) in both uniform and YCSB [26] workload,
whose throughput is 90% of a non-transactional system (hardware
limit) and outperforms FaRM [34] by 2∼20x especially under high
contention. The latency of 1Pipe is consistently low. Second, 1Pipe
scales linearly in TPC-C [29] benchmark, which outperforms Lock
and OCC by 10x. 1Pipe’s performance is resilient to packet loss.
Third, by removing fences and enabling replicas to serve reads,
1Pipe improves remote data structure performance to 2∼4x. Finally,
1Pipe reduces Ceph [96] replication latency by 64%.

In summary, the contributions of this paper are: (1) a novel
abstraction 1Pipe that provides causally and totally ordered unicast
and scattering with best-effort and reliable semantics; (2) design
and implementation of scalable and efficient 1Pipe in DCNs; (3)
design and evaluation of 1Pipe applications: transactional KVS,
independent transactions, remote data structure, and replication.

This work does not raise any ethical issues.

2 MOTIVATION
2.1 Abstractions of 1Pipe
1Pipe provides a causally and totally ordered communication ab-
straction in a distributed system with multiple hosts, where each
host has multiple processes. Each process has two roles: sender and
receiver. Each host maintains a monotonically increasing times-
tamp, which represents the wall clock and is synchronized among
all hosts. Amessage consists of one ormore packets.When a process
sends a group of messages (i.e., a scattering) to different destina-
tion processes, all packets of the messages are labeled with the
same timestamp of the sender host. Unlike multicast, the list of
destinations can be different for each scattering, in which messages
to different receivers can have different content. The total order
property is: each process delivers messages from different processes
in non-decreasing timestamp order. The causality property is: when
a receiver delivers a message with timestamp T, the timestamp of the
host must be higher than T.

onepipe_unreliable_send(vec[<dst, msg>])
TS, src, msg = onepipe_unreliable_recv()
onepipe_send_fail_callback(func(TS, dst, msg))
onepipe_reliable_send(vec[<dst, msg>])
TS, src, msg = onepipe_reliable_recv()
onepipe_proc_fail_callback(func(proc, TS))
TS = onepipe_get_timestamp()
onepipe_init()
onepipe_exit()

Table 1: Programming API of 1Pipe. Vec[<dst, msg>] indicates a
scattering of messages that have the same timestamp.

As Table 1 shows, 1Pipe provides two services with different
reliability guarantees: first, onepipe_unreliable_send/recv is a best
effort service where packet loss is possible. 1Pipe guarantees causal
and total order properties by buffering messages at the receiver and
only delivering them when it receives a barrier timestamp aggre-
gated from the network. So, best effort 1Pipe delivers message in
0.5 RTT plus barrier wait time. Best effort 1Pipe detects lost packets
via end-to-end ACK, but does not retransmit them. Modern data
centers typically have low network utilization and deploy advanced
congestion control mechanisms [10, 48, 61, 75, 101]. Measurements
show that intra-pod packet drop rate is on the order of 10−5 [44].
In RDMA networks with PFC, because congestion loss is elimi-
nated, packet corruption rate should be below 10−8 according to
IEEE 802.3 standard, and links with corruption rate higher than
10−6 are considered to be faulty [102]. So, data center applications
can assume that best effort 1Pipe is almost reliable but should use
onepipe_send_fail_callback to detect lost packets due to packet cor-
ruption or failure of the network or remote process. Loss recovery
is up to the application in this case.

Second, onepipe_reliable_send/recv is a reliable service which in
addition to ordering, guarantees reliability: a message is guaranteed
to be delivered if sender process, receiver process and the network do
not fail. It retransmits packets in the case of packet losses. In this
paper, we only consider crash failures. When a process or network
fails, message delivery stalls. 1Pipe removes in-flight messages from
or to the failed process. If a message cannot be delivered, the send

1Pipe: Scalable Total Order Communication in Data Center Networks SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

A B

O

send

write read

(a) Write after write.

A B

write

read

O1

O2
write

read

(b) Independent read, independent
write.

Figure 2: Ordering hazards in a distributed system.

failure callback is invoked on the sender. In addition, each process
may register a callback function via onepipe_proc_fail_callback to
get notifications of failed processes. Message delivery is resumed
after all non-fail processes finish their callback functions.

Reliable 1Pipe also provides restricted failure atomicity, which
means all-or-nothing delivery of a scattering of messages with the
exception that if a receiver fails permanently or network partitions
after the decision to deliver is made, the receiver can never deliver it.
If a receiver recovers from failures, it can deliver or discardmessages
consistently with the other receivers in the same scattering. In fact,
full failure atomicity is impossible in a non-replicated fail-stop
model, because a receiver or its network link may fail permanently
before delivering 𝑇 almost simultaneously with another receiver
delivering 𝑇 [38]. Reliable 1Pipe achieves atomicity via two-phase
commit and in-network barrier aggregation, so messages delivery
needs 1.5 RTTs plus barrier wait time.

In fault tolerant applications, 1Pipe provides a fast path in normal
cases, and falls back to the application for customized failure han-
dling. More concretely, an application may use state machine repli-
cation to replicate its states, and register onepipe_proc_fail_callback
which invokes a traditional consensus algorithm [65, 80]. Each
message is scattered to all replicas. When failure occurs, message
delivery is stalled, and 1Pipe invokes the callbacks in all non-fail pro-
cesses. Restricted failure atomicity ensures that all correct replicas
deliver the same sequence of messages. If the correct replicas reach
a quorum, the callbacks return, and message delivery is resumed.
Otherwise, there are too many failed replicas, and the application
can choose between consistency and availability. If it chooses consis-
tency and waits for some replicas to recover, the recovered replicas
can deliver the same sequence of messages.

2.2 Use Cases of 1Pipe
2.2.1 Total Ordering of Communication Events. Production data

centers provide multiple paths between two nodes [8, 43]. Due to
different delays of different paths, several categories of ordering
hazards [41, 89] may take place (Figure 2).
Write after write (WAW). Host 𝐴 writes data to another host 𝑂 ,
then sends a notification to host 𝐵. Send can be considered as a
write operation. When 𝐵 receives the notification, it issues a read to
𝑂 , but may not get the data due to the delay of A’s write operation.
Independent read, independent write (IRIW). Host 𝐴 first
writes to data 𝑂1 and then writes to metadata 𝑂2. Concurrently,
host 𝐵 reads metadata𝑂2 and then reads data𝑂1. It is possible that
𝐵 reads the metadata from 𝐴 but the data is not updated yet.

Ordering hazards affect system performance. To avoid the WAW
hazard, 𝐴 needs to wait for the first write operation to complete
(an RTT to 𝑂 , called a fence) before sending to 𝐵, thus increasing
latency. To avoid the IRIW hazard, 𝐴 needs to wait for write 𝑂1 to
complete before initiating write 𝑂2, and 𝐵 needs to wait for read
𝑂2 to complete before initiating read 𝑂1. The fence latency will be
amplified when more remote objects need to be accessed in order.

1Pipe can remove both WAW and IRIW hazards due to causality
and total ordering. In WAW case, by monotonicity of host times-
tamp, 𝐴 → 𝑂 is ordered before 𝐴 → 𝐵. By causality, 𝐴 → 𝐵 is
ordered before 𝐵 → 𝑂 . Consequently, 𝐴 → 𝑂 is ordered before
𝐵 → 𝑂 . Therefore, the write operation is processed before the read
operation at host 𝑂 , thus avoiding WAW hazard. By removing the
fence between 𝐴 → 𝑂 and 𝐴 → 𝐵, 1Pipe reduces the end-to-end
latency from 2.5 RTTs to 1.5 RTTs, in the absence of packet losses.

If an application needs to process many WAW tasks in sequence,
the power of 1Pipe is amplified. Using the traditional method, the
application needs 1 RTT of idle waiting during each WAW task, so,
the throughput is bounded by 1/RTT. In contrast, using 1Pipe, the
application can send dependent messages in a pipeline.

The argument above neglects possible packet losses. In best
effort 1Pipe, there is a small possibility that message 𝐴 → 𝑂 is
lost in flight, so every object needs to maintain a version, and 𝐵

needs to check the version of 𝑂 . If it does not match the version
in the notification message from 𝐴, then 𝐵 needs to wait for 𝐴 to
retransmit 𝑂 and re-notify 𝐵. 𝐴 registers send failure callback and
performs rollback recovery when 𝐴 is notified of a send failure.

If we use reliable 1Pipe, objects no longer need versioning, but
the end-to-end latency increases from 2.5 to 3.5 RTTs. However,
𝐴 can still send messages in a pipeline, and have much higher
throughput than the traditional way. In addition, reliable 1Pipe
can preserve causality in failure cases [16]: if 𝐴 fails to write to 𝑂 ,
message 𝐴 → 𝐵 will not be delivered, similar to Isis [19].

Similarly, 1Pipe removes IRIW hazard and improves minimum
end-to-end latency from 3 RTTs to 1 RTT by eliminating two fences.
The minimum latency is achieved when 𝐴 and 𝐵 initiate read and
write simultaneously.

1Pipe’s power to remove ordering hazards comes from its ability
to totally order communication events. This power is also a per-
fect match with total store ordering (TSO) memory model [89] in a
distributed shared memory (DSM) system. In TSO, each processor
observes a consistent ordering of writes from all other cores. In
other words, processors must not observe WAW and IRIW hazards.
Compared toweakermemorymodels, TSO reduces synchronization
in concurrent programming [77, 93], thereby simplifying program-
ming and reducing fence overheads.

2.2.2 1-RTT Replication. Replication is essential for fault toler-
ance. Traditional multi-client replication requires 2 RTTs because
client requests must be serialized (e.g., sent to a primary) before
sending to replicas [81]. With 1Pipe, we can achieve 1-RTT repli-
cation without making assumptions on log content, because the
network serializes messages. A client can directly send a log mes-
sage to all replicas with a scattering, and each replica orders logs
according to the timestamp (ties are broken by the client ID). Be-
cause reliable 1Pipe has an extra RTT, we use unreliable 1Pipe, and
handle packet losses and failures in a more clever way. First, to

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang

ensure ordered delivery of logs between each pair of client and
replica, they maintain a sequence number. The replica rejects mes-
sages with non-consecutive sequence numbers. Second, to detect
inconsistent logs due to packet losses, each replica maintains a
checksum of all previous log messages from all clients. When a
replica receives a message, it adds the message timestamp to the
checksum, and returns the checksum to the client. The response
message does not need to be ordered by 1Pipe. If a client sees all
checksums are equal from the responses, the logs of replicas are
consistent at least until the client’s log message, and the client
knows that the replication succeeds. Otherwise, there must be lost
messages to some replica or failure of a client or a replica. In the
case of packet loss, the client simply retransmits the messages since
the first rejected one. In the case of suspected replica failure, the
client notifies all replicas (or a cluster manager) to initiate a failure
recovery protocol, which uses a traditional consensus protocol to
remove inconsistent log entries and make checksums match. When
there is no packet loss and failure, replication only needs 1 RTT.

Similar to replication, 1Pipe can achieve state machine repli-
cation (SMR) [63] or virtual synchrony [17]. In a SMR-based dis-
tributed system, eachmessage is broadcast to all processes, and each
process uses the same sequence of input messages. SMR can solve
arbitrary synchronization problems [63]. An example is mutual ex-
clusion that requires the resource to be granted in the order that the
request is made [63]. With reliable 1Pipe, using SMR to implement
the lock manager can solve the mutual exclusion problem.

2.2.3 Distributed Atomic Operation (DAO). A DAO is a trans-
action that atomically reads or updates objects in multiple hosts.
DAO is widely used in transactional key-value store [32], caches in
web services, distributed in-memory computing, and index cache
of distributed storage. Traditionally, a DAO needs 3 RTTs: (1) lock
the objects; (2) if all locks succeed, send operations to the par-
ticipants; (3) unlock the objects. Using reliable 1Pipe, a DAO is
simply a scattering with the same timestamp from the initiator.
Each recipient processes messages from all DAOs in timestamp
order. So, the DAOs are serializable. If a recipient or the network
permanently fails, atomicity violation is not observable because the
objects cannot be accessed by any subsequent operations.

As an optimization, we can use unreliable 1Pipe for read-only
DAOs because if it fails due to packet losses, the initiator can retry it.
In terms of SNOW [72] and NOCS [73] theorems, 1Pipe provides 1-
RTT read-only DAOs with strict serializability, no storage overhead
and close-to-optimal throughput, but at the expense of blocking
operations until receiving the barrier timestamp.

2.2.4 Other Scenarios. In general transactionswith Opacity [90],
to obtain read and write timestamps, a transaction needs to query
a non-scalable centralized sequencer [35, 57] or wait for clock un-
certainty (e.g., Spanner [27] waits ∼10ms and FaRMv2 [90] waits
∼20𝜇s). 1Pipe can use local time as transaction timestamps directly
without waiting because lock messages of previous transactions
must be delivered to shards before data accesses of the current
transaction.

1Pipe timestamp is also a global synchronization point. For ex-
ample, to take a consistent distributed snapshot [24], the initiator
broadcasts a message with timestamp 𝑇 to all processes, which

DownlinkUplink

Senders Receivers

Figure 3: Routing topology of a typical data center network. Each
physical switch is split into two logical switches, one for uplink and
one for downlink. Dashed virtual link between corresponding uplink
and downlink switch indicates “loopback” traffic from a lower-layer
switch or host to another one.

Switching chip

Ingress Queue Egress

vNIC

Switch CPU

Ctrl

Figure 4: Architecture of a typical network switch.

directs all processes to record its local state and in-flight sent mes-
sages with a higher timestamp than 𝑇 .

3 BACKGROUND
In this section, we introduce unique characteristics of data center
network (DCN), whichmake a scalable and efficient implementation
of 1Pipe possible.

3.1 Data Center Network
Modern data centers typically adopt multi-rooted tree topologies [8,
43] to interconnect hundreds of thousands of hosts. In a multi-
rooted tree topology, the shortest path between two hosts first goes
up to one of the lowest common ancestor switches, then goes down
to the destination. Therefore, the routing topology form a directed
acyclic graph (DAG), as shown in Figure 3. This loop-free topology
enables hierarchical aggregation of barrier timestamps.

A highly available SDN controller runs on the management plane
to detect failures of switches and links, then reconfigure routing
tables on failures [42, 91].

3.2 Programmable Switches
A data center switch consists of a switching chip [3, 45] and a
CPU (Figure 4). The switch operating system [2] runs on the CPU
to reconfigure the switching chip. The switching chip forwards
selected traffic (typically control plane traffic, e.g., DHCP and BGP)
to the CPU via a virtual NIC.

The switching chip is composed of an ingress pipeline, multiple
FIFO queues and an egress pipeline. When a packet is received
from an input link, it first goes through the ingress pipeline to
determine the output link and queueing priority, then is put in
the corresponding FIFO queue. The egress pipeline pulls packets

1Pipe: Scalable Total Order Communication in Data Center Networks SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Barrier: 1

Barrier: 4

Barrier: 2

Barrier: 3

<

Barrier: 1

Barrier: 1

Barrier: 2

Barrier: 2

Barrier: 1

<

Figure 5: Hierarchical barrier timestamp aggregation.

from queues according to priority, applies header modifications
and sends them to output links. One key property of the switch is
that the queuing model ensures FIFO property for packets with the
same priority, ingress port and egress port.

The switch can provide good programmability. First, the CPU
can be used to process (a small amount of) packets [71]. Second,
the switching chip is increasingly programmable in recent years.
For example, Tofino chip [45] supports flexible packet parsers and
stateful registers. Users can program Tofino using P4 [20] to achieve
customized stateful per-packet processing.

Despite good programmability, the switch typically has limited
buffer resource to hold packets. The average per-port packet buffer
is typically hundreds of kilobytes [14, 15] in size. As a result, it is
challenging to buffer many packets at the switches in a data center.

4 BEST EFFORT 1PIPE
Best effort 1Pipe provides total order, causal, and FIFO message
delivery, but does not retransmit lost packets and does not provide
atomicity. A naive approach to realize this is ordering all messages
with a centralized sequencer, which would be a bottleneck. Instead,
we will introduce how to achieve scalable ordering in the regular
DCN topology.

4.1 Message and Barrier Timestamp

Message timestamp. 1Pipe sender assigns a non-decreasing times-
tamp for each message. Messages in a scattering have the same
timestamp. Given recent efforts on 𝜇s accurate clock synchroniza-
tion in data centers [28, 40, 66, 69], we synchronize monotonic
time of hosts, and use the local clock time as message timestamps.
Clock skew slows down delivery but does not violate correctness.
Message timestamp determines the delivery order at a receiver.
The receivers deliver arrival messages in ascending order of their
timestamps (ties are broken through sender ID).
Barrier timestamp. When a receiver delivers a message with
timestamp 𝑇 , it must be sure that it has received and delivered all
the messages whose timestamps are smaller than 𝑇 . A straightfor-
ward approach is to only deliver messages with non-decreasing
timestamps, and drop all out-of-order messages. However, since
different network paths have different propagation and queuing de-
lays, this approach will drop too many messages, e.g., 57% received
messages are out-of-order in our experiment where 8 hosts send
to one receiver. To this end, we introduce the concept of barrier
timestamp. A barrier timestamp is associated with either a link or a

node (i.e., a switch or an end host) in the routing graph. The barrier
timestamp is the lower bound of message timestamps of all future
arrival messages from the link or at the node. Each receiver main-
tains its own barrier timestamp and deliver the messages whose
timestamps are smaller than the barrier timestamp.

If the transport between sender and receiver is FIFO, a receiver
can easily figure out the barrier if it has received messages from
all the senders: the barrier is the minimum timestamp of latest
messages from all the senders. Therefore, a naive solution would be
for every sender to send timestamped messages to every receiver
so that the receivers can figure out the barrier and deliver messages.
Unfortunately, this solution requires sending messages to receivers
not in the scattering group, which does not scale.
Hierarchical barrier timestamp aggregation. 1Pipe exploits
the knowledge of the queuing structure of the network, making
the lower bound aggregation much more scalable and efficient
than if it was implemented at only a logical level. 1Pipe leverages
programmable switches to aggregate the barrier timestamp infor-
mation. Given the limited switch buffer resource, 1Pipe does not
reorder messages in the network. Instead, 1Pipe forwards messages
in the network as usual, but reorders them at the receiver side based
on the barrier timestamp information provided by the switch.

In 1Pipe, we attach two timestamp fields to each message packet.
The first is message timestamp field, which is set by the sender and
will not be modified. The second field is barrier timestamp, which
is initialized by the sender but will be modified by switches along
the network path. The property of the barrier timestamp field is:

When a switch or a host receives a packet with barrier timestamp
𝐵 from a network link 𝐿, it indicates that the message timestamp and
barrier timestamp of future arrival packets from link 𝐿 will be larger
than 𝐵.

To derive barriers, the sender initializes both fields of all the
packets in a message with the non-decreasing message timestamp.
The switch maintains a register 𝑅𝑖 for each input link 𝑖 ∈ I, where
I is the set of all input links. After forwarding a packet with barrier
timestamp 𝐵 from input link 𝑖 to output link 𝑜 , the switch performs
two updates. First, it updates register 𝑅𝑖 := 𝐵. Second, it modifies
the barrier timestamp of the packet to 𝐵𝑛𝑒𝑤 as follows:

𝐵𝑛𝑒𝑤 := min{𝑅𝑖 |𝑖 ∈ I} (4.1)

Using (4.1), each switch independently derives the barrier times-
tamp based on all input links. As shown in Figure 5, barrier times-
tamps are aggregated hierarchically through layers of switches
hop-by-hop, and finally the receiver gets the barrier of all reach-
able hosts and links in the network. This algorithm maintains the
property of barrier timestamps, given the FIFO property of each
network link.

When the receiver receives a packet with barrier timestamp 𝐵, it
first buffers the packet in a priority queue that sorts packets based
on the message timestamp. The receiver knows that the message
timestamp of all future arrival packets will be larger than 𝐵. Hence,
it delivers all buffered packets with the message timestamp below
𝐵 to the application for processing. If a process receives a message
with timestamp above 𝐵, it is dropped, and a NAK message is
returned to the sender. So, if a link or switch is not strictly FIFO, out-
of-order messages will not violate correctness. Notice that barrier

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang

aggregation only relies on hop-by-hop FIFO links instead of a FIFO
end-to-end transport. Therefore, 1Pipe can work with a variety of
multi-path routing schemes [9, 21, 33, 47, 58, 95, 100].
Causality. To preserve causal order in the Lamport logical clock
sense [63], the local clock time should be higher than delivered
timestamps. This is implied by timestamp aggregation because
each process has both sender 𝑆 and receiver 𝑅 roles, and a barrier
𝑇 received by 𝑅 is aggregated from all senders including 𝑆 . Because
the local clock is monotonic, 𝑆 ’s timestamp is higher than 𝑇 when
𝑅 receives barrier 𝑇 .

4.2 Beacons on Idle Links
As shown before, at each hop, the per-packet barrier timestamp is
updated to the minimum barrier timestamp value of all possible
input links. As a result, an idle link stalls the barrier timestamp, thus
throttling the whole system. To avoid idle links, we send beacons
periodically on every link.
What is a beacon? Unlike the message packet, the beacon packet
only carries the barrier timestamp field and has no payload data.
How to send beacons? We send beacon packets on a per-idle-link
basis. Beacon packets can be sent by both hosts and switches, but
the destination must be its one-hop neighbors. This hop-by-hop
property ensures that the beacon overhead is unrelated to network
scale. For a beacon generated by the host, the barrier timestamp
is the host clock time. For a beacon generated by the switch, the
barrier timestamp is initialized according to (4.1).
When to send beacons? We introduce a beacon interval 𝑇𝑏𝑒𝑎𝑐𝑜𝑛 .
When a host or a switch output link does not observe any message
packet for 𝑇𝑏𝑒𝑎𝑐𝑜𝑛 time, it generates a beacon packet. We should
choose a suitable 𝑇𝑏𝑒𝑎𝑐𝑜𝑛 to balance bandwidth overhead and sys-
tem delay. The beacons are sent at synchronized times on different
hosts, so that when network delays are identical, a switch receives
beacons almost simultaneously. If beacons were sent on random
times, the switch must wait for the last beacon to come, which in-
creases expected delay of a message by nearly one beacon interval.
With synchronized beacons, the expected delay overhead is only
half of the beacon interval.
Handling failures. When a host, link, or switch fails, the barrier
timestamp of its neighbors stop increasing. In order to detect fail-
ures, each switch has a timeout timer per input link. If no beacon or
data packet is received for a timeout, e.g., 10 beacon intervals, the
input link is considered to be dead and removed from the input link
list. After removal of the failed link, the barrier timestamp resumes
increasing. This failure handling mechanism is decentralized.
Addition of newhosts and links. For a new host, it synchronizes
clock with the timemaster. When a link is added between a host and
switch or between two switches, because the switch must maintain
monotonicity of its 𝐵𝑛𝑒𝑤 , it suspends updates to 𝐵𝑛𝑒𝑤 until the
barrier received from the new link is greater than 𝐵𝑛𝑒𝑤 .

5 RELIABLE 1PIPE
Now, we present the design of reliable 1Pipe that can handle packet
loss and failure.

Sender Receiver 1 Receiver 2

Prepare

ACK

Switch

Commit

Figure 6: Two Phase Commit in reliable 1Pipe.

Host
Data Plane

Switch

Host

Host

Controller

①Detect

②Determine

③Broadcast
④Discard

⑤Recall

⑥Callback

⑦Resume

①Detect
(beacon timeout)

④Discard
⑥Callback

Figure 7: Failure recovery in reliable 1Pipe.

5.1 Handling Packet Loss
When a receiver delivers a message with timestamp𝑇 , it must make
sure that all messages below 𝑇 are delivered. So, if a receiver is un-
aware of packet loss, it cannot reliably deliver messages according
to the barrier timestamp. Even if the switch is capable to detect lost
packets, there is still a problem. For example, host 𝐴 sends to 𝐵,
then sends to𝐶 via a different path. Three events happen according
to the following order: 𝐴 → 𝐵 is lost; 𝐴 → 𝐶 arrives; 𝐴 crashes. In
this case, 𝐴 → 𝐶 is delivered, while 𝐴 → 𝐵 cannot be recovered.
The failure to deliver 𝐴 → 𝐵 and the delivery of 𝐴 → 𝐶 violate
reliable ordering property.

Our key idea to handle packet losses is a Two Phase Commit (2PC)
approach:
• Prepare phase: The sender puts messages into a send buffer,
and transmits them with timestamps. Switches along the path do
NOT aggregate timestamp barriers for data packets. The receiver
stores messages in a receive buffer, and replies with ACKs. The
sender uses ACKs to detect and recover packet losses.

• Commit phase: When a sender collects all the ACKs for data
packets with timestamps below or equal to 𝑇 , it sends a commit
message that carries commit barrier 𝑇 . The commit message is
sent to the neighbor switch rather than the receivers, as the red
arrow in Figure 6 shows. Each switch aggregates the minimum
commit barriers on input links, and produce commit barriers that
propagate to output links. This timestamp aggregation procedure
is exactly the same as Sec.4.1. A receiver delivers messages below
or equal to 𝑇 in the receive buffer when it receives a commit
barrier 𝑇 . Similar to best effort 1Pipe, commit messages also
need periodic beacons on idle links.

5.2 Handling Failure
Like in Sec. 4.2, crash failure of a component is detected by its
neighbors using timeout. However, a failed component cannot be
simply removed, because otherwise, the in-flight messages sent by
the failed component cannot be consistently delivered or discarded.

To achieve restricted failure atomicity in Sec.2.1, we use the net-
work controller in data centers to detect failures via beacon timeout.
The controller itself is replicated using Paxos [65] or Raft [80], so,
it is highly available, and only one controller is active at any time.

1Pipe: Scalable Total Order Communication in Data Center Networks SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

The controller needs to determine which processes fail and when
they fail. The former question is easier to answer. A process that
disconnects from the controller in a routing graph is regarded as failed.
For example, if a host fails, all processes on it are considered as
failed. If a Top-of-Rack (ToR) switch fails, and hosts in the rack are
only connected to one switch, then all processes in the rack fail.

The latter question, when processes fail, is harder to answer.
The challenge is that we cannot reliably determine the last commit-
ted and last delivered timestamp of a process. Because there is a
propagation delay from committing a timestamp to delivering the
timestamp to receivers, it is possible to find a timestamp 𝑇 commit-
ted by a failed process 𝑃 but not propagated to any receiver, so that
all receivers have received messages from 𝑃 before 𝑇 in the receive
buffer (and hence can deliver them), but no messages after 𝑇 have
been delivered, so they can be discarded. Failure timestamp of 𝑃 is
defined as such, which is computed as the maximum last commit
timestamp reported by all neighbors of 𝑃 . If multiple failures occur
simultaneously, we try to find a set of correct nodes in a routing
graph that separates failed nodes and all correct receivers. If such a
set cannot be found due to network partition, then we use a greedy
algorithm to find a set to separate as many receivers as possible. The
non-separable receivers sacrifice atomicity because some messages
after 𝑇 may have been delivered.

The procedure to handle failure is as follows and shown in Fig-
ure 7: (see Appendix for correctness analysis)
• Detect: The neighbors of failed components notifies controller
along with its last commit timestamp 𝑇 .

• Determine: Controller determines failed processes and their
failure timestamps according to the routing graph.

• Broadcast: Controller broadcasts the failed processes 𝑃 and its
failure timestamp 𝑇 to all correct processes.

• Discard: Each correct process discards messages sent from 𝑃

with timestamp higher than 𝑇 in the receive buffer.
• Recall: Each correct process discards messages sent to 𝑃 in
send buffer, which are waiting for ACK from 𝑃 . If a discarded
message is in a scattering, according to failure atomicity, the
scattering needs to be aborted, i.e., messages to other receivers in
the same scattering need to be recalled. The sender sends a recall
message to such receivers, then each of the receivers discards the
messages in the receive buffer and responds ACK to the sender.
The sender completes Recall after collecting the ACKs.

• Callback: Each correct process executes the process failure
callback registered in Table 1, which enables applications to
customize failure handling. Then, it responds controller with a
completion message.

• Resume: Controller collects completions from all correct pro-
cesses, and then notifies network components to remove input
link from the failed component, thereby resuming barrier prop-
agation.

Controller Forwarding. If a network failure affects connectivity
between 𝑆 and 𝑅, the Commit phase in 2PC and the Recall step in
failure handling may stall because 𝑆 repeatedly retransmits a mes-
sage but cannot receive ACK from 𝑅. In this case, 𝑆 asks controller
to forward the message to 𝑅, and waits for ACK from the controller.
If controller also cannot deliver the message, 𝑅 will be announced

as failed, and the undeliverable recall message is recorded. If con-
troller receives ACK of a recall message but cannot forward it to
𝑆 , 𝑆 will be announced as failed. In summary, if a process does not
respond controller within timeout, it is considered as failed.
Receiver Recovery. If a process recovers from failure, e.g., the
network link or switch recovers, the process needs to consistently
deliver or discard messages in the receive buffer. The controller noti-
fies process of its own failure. Then, the process contacts controller
to get host failure notifications since its failure and undeliverable
recall messages. After delivering buffered messages, the recovered
process needs to join 1Pipe as a new process. This is because if a pro-
cess can fail and recover multiple times, the controller would need
to record all failure and recovery timestamps, adding complexity.
Limitations. If a process fails permanently, the last timestamp
it has delivered cannot be known exactly, so, 1Pipe only ensures
all correct receivers and recovered receivers deliver messages con-
sistently. In addition, when network partition occurs, separated
receivers may deliver messages after failure timestamp. 1Pipe relies
on the application to coordinate such failures.

6 IMPLEMENTATION
6.1 Processing on End Hosts
We implement an 1Pipe library, lib1pipe, at the end host. The library
is built on top of RDMA verbs API. 1Pipe obtains timestamp from
CPU cycle counter and assigns it to messages in software. Because
RDMA RC buffers messages in different QPs, we cannot ensure
timestamp monotonicity on the NIC-to-ToR link. Ideally, we would
like to use a SmartNIC and attach timestamps to packets when
they egress to the port. However, because we only have access
to standard RDMA NICs, we use RDMA UD instead. Each 1Pipe
message is fragmented into one or more UD packets.

1Pipe implements end-to-end flow and congestion control in
software. When a destination process is first accessed, it establishes
a connection with the source process and provisions a receive buffer
for it, whose size is the receive window. A packet sequence number
(PSN) is used for loss detection and defragmentation. Congestion
control follows DCTCP [10] where ECN mark is in the UD header.
When a scattering is sent by the application, it is stored in a send
buffer. If the send buffer is full, the send API returns fail. Each
destination maintains a send window, which is the minimum of the
receive and congestion windows. When all messages of a scattering
in send buffer are within the send window for the corresponding
destination, they are attached with the current timestamp and sent
out. This means that when some destinations or network paths
of a scattering are congested, it is held back in the send buffer
rather than slowing down the entire network. To avoid live-locks,
a scattering acquires “credits” from the send windows. If the send
window for a destination is insufficient, the scattering is held in a
wait queue without releasing credits. This makes sure that large
scatterings can eventually be sent, at the cost of wasting credits
that could be used to send other scatterings out-of-order. Beacon
packets are sent to the ToR switch, and they are not blocked by
flow control.

A UD packet in 1Pipe adds 24 bytes of headers: 3 timestamps
including message, best-effort barrier, and commit barrier; PSN;

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang

an opcode and a flag that marks end of message. A timestamp is a
48-bit integer, indicating the number of nanoseconds passed on the
host. We use PAWS [50] to handle the timestamp wrap around.

When lib1pipe initializes, it registers to the controller and spawns
a polling thread to: (1) generate periodic beacon packets; (2) poll
RDMA completion queues and process received packets, including
generating end-to-end ACKs and retransmitting lost packets; (3)
reorder messages in the receive buffer and deliver them to appli-
cation threads. lib1pipe uses polling rather than interrupt because
RDMA RTT is only 1 ∼ 2𝜇s, while interrupt would add ∼ 10𝜇s of
delay [97].

Processes within a host are exposed directly to the Top-of-Rack
(ToR) switch(es), and the ToR aggregates timestamps of all pro-
cesses in the rack. In future work, the software process of lib1pipe
may be offloaded to a programmable NIC [37, 59], which assigns
timestamps to messages on egress pipeline.

The controller is a replicated service that stores routing graph,
process information, failure notifications, and undeliverable recall
messages in etcd [5]. In a large network, future work can distribute
the controller to a cluster, each of which serves a portion of the
network.

6.2 In-Network Processing
We implement in-network processing at three types of the network
switches with different programming capabilities.

6.2.1 Programmable Switching Chip. We implement the in net-
work processing using P4 [20] and compile it to Tofino [45]. Be-
cause a Tofino switch has 4 pipelines, it is regarded as 4 ingress
and 4 egress switches connected via 16 all-to-all links. Each of the
8 “switches” derives barriers independently. 1Pipe needs 2 state
registers per input link, storing the two barriers for best effort and
reliable 1Pipe, respectively. For each packet, barrier register of the
input link is updated in the first stateful pipeline stage of the switch.
Because each stage can only compute the minimum of two barriers,
the switch uses a binary tree of registers with 𝑂 (log𝑁) pipeline
stages to compute the minimum link barrier 𝐵𝑛𝑒𝑤 , where 𝑁 is the
number of ports. For a typical 32 port switch, it would cost 5 stages
out of the 16 ingress stages. At the final pipeline stage, the bar-
rier field in packet is updated to 𝐵𝑛𝑒𝑤 . The control plane software
routinely checks link barriers and reports failure if a link barrier
significantly lags behind. The expected delay of best effort 1Pipe
is (base delay + clock skew) when links are fully utilized, or (base
delay + beacon interval/2 + clock skew) when most links are idle.

6.2.2 Switch CPU. For a switch without a programmable switch-
ing chip, e.g., Arista 7060 which uses Broadcom Tomahawk chip,
we implement in-network processing on the switch CPU. Although
commodity switches cannot process packets in data plane, they
have a CPU to process control-plane packets, analogous to directly
connecting a server to a port of the switch. Compared to server
CPUs and NICs, the switch CPU is typically less powerful (e.g., 4
cores at 1 GHz) and has lower bandwidth (e.g., 1 Gbps). Because
the switch CPU cannot process every packet, data packets are for-
warded by the switching chip directly. The CPU sends beacons
periodically on each output link, regardless of whether the link

is idle or busy. Received barriers in beacons are stored in regis-
ters per input link. A thread on the CPU periodically computes
the minimum of link barriers and broadcasts new beacons to all
output links. Computing the minimum barrier takes hundreds of
cycles, which is not a bottleneck compared to the cost of broadcast.
Because data and beacon packets are FIFO in switch queues and
on network links, the barrier property is preserved. On receivers,
buffered data packets are delivered to the application according
to barriers in beacon packets. Compared with the programmable
chip, switch CPU has higher latency due to CPU processing. So,
the expected delay is base delay + (switch CPU processing delay ×
number of hops + beacon interval/2 + clock skew).

6.2.3 Delegate Switch Processing to a Host. If the switch vendor
does not expose access interfaces to switch CPUs, we can offload
the beacon processing to end hosts. We designate an end-host repre-
sentative for each network switch. The challenge is that best effort
1Pipe requires the barrier timestamp to be the lower bound of future
message timestamps on a network link 𝐿. So, beacons with barrier
timestamps on 𝐿 must pass through 𝐿. That is, for two directly
connected switches 𝑆1, 𝑆2 and their representatives 𝐻1, 𝐻2, beacon
packets from 𝐻1 to 𝐻2 need to go through the link 𝑆1 → 𝑆2. If
the routing path between two representatives does not go through
𝑆1 → 𝑆2, beacon packets needs to detour: they are sent with three
layers of IP headers: 𝐻1 → 𝑆1, 𝑆1 → 𝑆2, and 𝑆2 → 𝐻2. We install
tunnel termination rules in each network switch to de-capsulate
one layer of IP header, so the beacon packet will traverse through
𝐻1 → 𝑆1 → 𝑆2 → 𝐻2.

Beacon packets use one-sided RDMA write to update barriers
on representative host. Similar to Sec.6.2.2, minimum barriers are
periodically computed and broadcast to downstream representa-
tives. The expected delay is base delay + ((RTT between switch and
host + host processing delay) × number of hops + beacon interval/2
+ clock skew). Because CPUs on end hosts may have shorter pro-
cessing delay (via RDMA) than switch CPU (via OS IP stack), host
delegation may have shorter overall delay. This is why we use host
delegation for evaluations in Sec.7.

7 EVALUATION
7.1 Methodology
Our testbed has 10 Arista 7060CX-32S 100G switches [1] and 32
servers, forming a 3-layer fat-tree topology (4 ToR, 4 Spine, and 2
Core) similar to Figure 3. The network has no oversubscription be-
cause our traffic pattern is all-to-all. Each server has 2 Xeon E5-2650
v2 CPUs and a Mellanox ConnectX-4 NIC running RoCEv2 [12].
We dedicate a CPU core as representative of each switch and NIC to
process beacons (Sec.6.2.3). The host representative is directly con-
nected to the switch, so beacon packets do not need to detour. For
microbenchmarks in Sec.7.2, we use Tofino [45] switches in place
of Arista switches. In small-scale experiments (1∼32 processes),
each process runs on a distinct server. Each process uses a pair of
threads for sending and receiving, respectively. With less or equal
to 8 servers, they colocate in one rack. With 16 servers, they are in
two racks in a row. For experiments with 64∼512 processes, each
server hosts the same number of processes. Clocks are synchro-
nized via PTP [28] every 125 ms, achieving an average clock skew

1Pipe: Scalable Total Order Communication in Data Center Networks SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32 64 128 256 512

T
p
u
t
p
e
r

P
ro

c
e
s
s
 (

M
 m

s
g
/s

)

Number of Processes

1Pipe/BE
1Pipe/R

SwitchSeq

HostSeq
Token

Lamport

(a) Throughput.

2
2

2
3

2
4

2
5

2
6

2
7

2 4 8 16 32 64 128 256 512

L
a
te

n
c
y
 (

u
s
,
lo

g
)

Number of Processes

1Pipe/chip
1Pipe/host
SwitchSeq

HostSeq
Token

Lamport

(b) Latency.
Figure 8: Scalability comparison of total order
broadcast algorithms.

 0

 5

 10

 15

 20

 25

 30

 35

8 16 32 512

L
a

te
n

c
y
 (

u
s
)

Number of Processes

BE-chip
BE-host

R-chip

R-host
unorder

(a) Scalability on testbed. Error bars show 5𝑡ℎ and 95𝑡ℎ per-
centile.

 0
 10
 20
 30
 40
 50
 60
 70
 80

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

u
s
)

Packet Loss Probability

BE-chip
BE-host

R-chip

R-host
unorder

(b) Simulation of varying packet loss rates.
Figure 9: Message delivery latency of 1Pipe
variants.

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32

R
e

c
o

v
e

ry
 T

im
e

 (
u

s
)

Number of Hosts

Host
ToR Switch

Core Link
Core Switch

Figure 10: Failure recovery time of reliable
1Pipe. Error bars show 5𝑡ℎ and 95𝑡ℎ percentile.

 0

 1

 2

 3

 4

 5

 6

 7

0 1 5 25 125
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

T
p
u
t
p
e
r

P
ro

c
e
s
s
 (

M
 m

s
g
/s

)

M
e

m
o

ry
 (

M
B

)

Delivery Latency (us)

Throughput
Memory (MB)

Figure 11: Reorder overhead on a host.

of 0.3 𝜇s (1.0 𝜇s at 95% percentile), which agrees with Mellanox’s
whitepaper [6]. We choose beacon interval to be 3 𝜇s.

7.2 Microbenchmarks

Scalability. 1Pipe can achieve total order broadcast. Figure 8a
compares the scalability of 1Pipe with other total order broadcast
approaches using token [86], Lamport timestamp [63], and cen-
tralized sequencer at host NIC [57] or programmable switch [51].
We test an all-to-all traffic pattern where each process broadcasts
64-byte messages to all processes. 1Pipe scales linearly to 512 pro-
cesses, achieving 5M messages per second per process (i.e., 80M
msg/s per host). The throughput of 1Pipe is limited by CPU pro-
cessing and RDMA messaging rate. Reliable 1Pipe (1Pipe/R) has
25% lower throughput than best effort 1Pipe (1Pipe/BE) due to 2PC
overhead. Programmable chip and host representative (not shown)
deliver the same high throughput because 1Pipe decouples message
forwarding from barrier propagation.

In contrast, the sequencer is a central bottleneck and introduces
extra network delays to detour packets (Figure 8b). The latency
soars when throughput of sequencer saturates and congestion ap-
pears. Token has low throughput because only one process may
send at any time. We apply a common optimization to Lamport
timestamp [63] which exchanges received timestamps per interval
rather than per message. It has a trade-off between latency and
throughput, e.g., for 512 processes, even if 50% throughput is used
for timestamp exchange, broadcasting the messages takes 200 𝜇s.
Message delivery latency. Figure 9a shows the message delivery
latency of 1Pipe when the system is idle and thus has zero queuing
delay. 1Pipe/BE with programmable chip delivers the lowest latency

overhead compared to the unordered baseline. The average over-
head (1.7∼2.3𝜇s) is almost constant with different number of the
network layers and processes, which is half of the beacon interval
plus average clock skew. The tail latency overhead (1.7∼3.3𝜇s) is
half of the beacon interval plus maximum clock skew. End host
representatives introduce extra forwarding delay from the switch
to the end host, which is ∼ 2𝜇s and contributes 10𝜇s for the 5-hop
topology. In our testbed, ≤8, 16, and ≥32 processes have 1, 3, and 5
network hops, respectively. Reliable 1Pipe adds an RTT (2 ∼ 10𝜇s)
to best effort 1Pipe due to Prepare phase in 2PC. The RTT and host
forwarding delay are proportional to network hop count.

As Sec.2.1 discussed, packet loss rate of links are typically lower
than 10−8, but faulty links may have loss rates above 10−6. In Fig-
ure 9b, we simulate random message drop in lib1pipe receiver to
evaluate how packet loss affects latency in the testbed with 512
processes. When loss rate is higher than 10−5, latency of 1Pipe
starts to grow. In both BE- and R-1Pipe, a lost beacon packet on
any link will stall delivery of barrier until the next beacon, and all
receivers need to wait for the worst link. In R-1Pipe, a lost message
in prepare phase will trigger retransmission, which will stall the
network for an RTT (and possibly multiple RTTs if retransmissions
are lost). So, R-1Pipe is more sensitive to packet loss. Packet loss
has little impact on throughput because 1Pipe can transfer new
messages while retransmitting lost packets.

Besides packet loss, queuing delay caused by background traffic
can also increase 1Pipe latency. As Figure 12a shows, with 10 back-
ground TCP flows per host, the latency inflation of BE-1Pipe and
R-1Pipe are 30 and 50 𝜇s, respectively. A higher oversubscription
ratio would also increase latency due to increased buffering at the
core of the network. In Figure 12b, we increase oversubscription
ratio of the network, and the delay increases due to congestion and

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 2 4 6 8 10

L
a

te
n

c
y
 (

u
s
)

Number of Background Flows per Host

BE-host R-host

(a) Background flows.

 0

 20

 40

 60

 80

 100

 120

1:1 2:1 3:1 4:1 5:1 6:1

L
a

te
n

c
y
 (

u
s
)

Oversubscription Ratio

BE-host R-host

(b) Oversubscription.
Figure 12: The impact of queuing delay on 1Pipe latency.

10
-3

10
-2

10
-1

10
0

10
1

10
2

1 10 100 1000P
o
rt

io
n
 o

f
a
 C

P
U

 c
o
re

Beacon Interval (us)

Arista switch (OS)
Arista switch (raw)

Xeon E5 Server (DPDK)

(a) CPU processing overhead.

10
-3

10
-2

10
-1

10
0

10
1

1 10 100 1000

P
e

rc
e

n
ta

g
e

 o
f

O
v
e

rh
e

a
d

 T
ra

ff
ic

Beacon Interval (us)

10 Gbps
40 Gbps

100 Gbps

(b) Network bandwidth overhead.
Figure 13: Beacon overhead under different beacon intervals. CPU
processing overhead for Arista switch is extrapolated.

PFC pauses in core network. We believe more advanced congestion
control mechanisms [11, 39, 70, 76, 83] can mitigate this problem.

Messages much larger than MTU will stall other messages, e.g.,
an 1 MB message will increase 80 𝜇s latency of other messages.
Failure recovery. Failure detection in 1Pipe is typically faster
than heartbeat timeout in most applications, because the beacon
interval in 1Pipe is very low. Figure 10 depicts failure recovery
time, which measures the average time of barrier timestamp stall
for correct processes. In our testbed, a failure is detected if beacon
is not received for 10 beacon intervals (30 𝜇s). In addition to failure
detection time, the recovery procedure in Sec.5 requires 6 network
diameters plus the time to transmit and process messages. Core
link and switch failures do not affect connectivity, so, only the
controller needs to be involved, and no process is considered to be
failed. Host, NIC, host link, and ToR switch failures cause processes
to disconnect from the system, so, the recovery takes longer because
each correct process needs to discard messages from or to them.
There is a significant jump for ToR switch because all processes in
the rack fail, leading to more failure recovery messages.
CPU overhead. The CPU overhead of 1Pipe has two parts: re-
ordering at receivers and beacon processing at switches. The mes-
sage delivery throughput degrades slightly with more messages to
reorder. As Figure 11 shows, the maximal send and receive buffer
size increases linearly with latency, but only takes a few megabytes
on a 100 Gbps link.

Figure 13a shows the number of cores required for beacon pro-
cessing of a 32-port switch. A host CPU core can sustain 3 𝜇s beacon
interval of the switch, which is our testbed setting. If switch CPUs
are used instead, the raw packet processing capacity of a switch
CPU is roughly 1/3 of a host CPU core. If we can bypass the kernel
network stack and process packets efficiently at Arista switches, a
single switch CPU core can sustain 10 𝜇s beacon interval.
Network overhead. As Figure 13b shows, with high link band-
width and a reasonable beacon interval (e.g., 3 𝜇s), beacon traffic is

a tiny portion (e.g., 0.3%) of link bandwidth. Because beacons are
hop-by-hop, the overhead is determined by beacon interval and
does not increase with system scale.
Scalability to larger networks. On the latency perspective, the
base and beacon processing delays are proportional to the number
of hops in the network, which is typically logarithm to the number
of hosts [8, 43]. The clock skew increases due to higher latency
between clock master and hosts, and higher probability of bad
clocks with high drift rates [69]. We did not analyze the clock
skew quantitatively yet. For reliable 1Pipe, the expected number
of packet losses in an RTT is proportional to the number of hosts
times the number of hops. For 32K hosts, if all links are healthy
(with loss rate 10−8), the latency increases by 0 ∼ 3𝜇s compared
to loss-free; if all links are sub-healthy (with loss rate 10−6), the
latency increases by 3 ∼ 17𝜇s. On the throughput perspective, the
beacon overhead is unrelated to network scale, while the hosts
would use larger memory and more CPU cycles to reorder the
messages. The memory size is BDP (Bandwidth-Delay Product),
and the reordering time is logarithm to BDP.

The major scalability challenge is failure handling. Failure of any
component will stall the entire network. In best effort 1Pipe, failure
handling is localized because the fault component is removed by
the neighborhood in a 30 𝜇𝑠-like timeout, so the remaining parts of
the network experience a delivery latency inflation. Although this
inflated latency is fixed, the frequency of occurrence is proportional
to network scale. In reliable 1Pipe, failure handling is coordinated
by a centralized controller, which needs to contact all processes in
the system, so, the failure recovery delay increases proportionally
with system scale, which is 3∼15 𝜇𝑠 per host.

7.3 Applications
7.3.1 Transactional Key-Value Store. We evaluate a distributed

transactional key-value store where each server process stores a
portion of KVs in memory using C++ std::unordered_map without
replication. A transaction (TXN) is composed of multiple inde-
pendent KV read or write operations. TXN initiators dispatch KV
operations to server processes by hash of key. Read-only (RO) TXNs
are served by best effort 1Pipe, while read-write (WR) and write-
only (WO) TXNs use reliable 1Pipe. For comparison, we implement
non-replicated and non-durable FaRM [34] which serves RO TXNs
in 1 RTT by reading the KVs and checking lock and version. WR
and WO TXNs in FaRM use OCC [62] and two-phase commit. As
a theoretical performance upper bound, we also compare with a
non-transactional system.

Each TXN has 2 KV ops by default, where read and write are
randomly chosen for each op. Keys are 64-bit integers generated
either uniformly random or by Zipf distribution in YCSB [26]. YCSB
has hot keys. The value size is randomly generated according to
Facebook’s ETC workload [13]. We record average TXN latency at
95% of peak throughput.

In Figure 14a, 50% of TXNs are read-only. In both uniform and
YCSB distribution, 1Pipe delivers scalable throughput (per-process
throughput does not degrade), which is 90% of a non-transactional
key-value store (NonTX). As number of processes increase, YCSB
scales not as linearly as uniform, because contention on hot keys
lead to load imbalance of different servers. With 512 processes,

1Pipe: Scalable Total Order Communication in Data Center Networks SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16 32 64 128 256 512T
p
u
t
p
e
r

p
ro

c
e
s
s
 (

M
 t
x
n
/s

)

Number of Processes

1Pipe/Unif
FaRM/Unif

NonTX/Unif

1Pipe/YCSB
FaRM/YCSB

NonTX/YCSB

(a) Scalability.

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

0.1 0.2 0.5 1 2 5 10 20 50

T
X

N
 l
a
te

n
c
y
 (

u
s
,
lo

g
)

Percentage of Write Ops

1Pipe-RO
1Pipe-WO
1Pipe-WR

FaRM-RO
FaRM-WO
FaRM-WR

(b) Average latency of YCSB workload.

 0

 1

 2

 3

 4

 5

2 4 8 16 32 64 128 256 512T
h
ro

u
g
h
p
u
t
(G

 K
V

 o
p
/s

)

Number of ops per TXN

1Pipe/Unif
FaRM/Unif

NonTX/Unif

1Pipe/YCSB
FaRM/YCSB

NonTX/YCSB

(c) Different transaction sizes.
Figure 14: Performance of a transactional key-value store.

YCSB has 70% throughput of uniform both for 1Pipe and NonTX.
In uniform workload that is free of contention, FaRM delivers 50%
throughput of 1Pipe because WR and WO TXNs need 3 or 4 RTTs.
In YCSB workload, FaRM does not scale because it locks keys for
2 RTTs during WO/WR TXN commit, and the hot keys block all
conflicting TXNs. In contrast, 1Pipe does not lock keys. Each server
processes TXNs on the same key in order.

In Figure 14b, we adjust the percentage of write ops and measure
latency of RO, WO, and WR TXNs with 512 processes. The latency
of 1Pipe is almost constant because servers process read and write
ops on the same key in order. WO andWR use reliable 1Pipe, which
is slower than RO that uses best effort 1Pipe. For pure RO workload,
FaRM has lower latency than 1Pipe because it completes in 1 RTT
and does not wait for network-wide reorder. Non-contended FaRM
WO and WR consumes 3 and 4 RTTs, respectively, which is slightly
worse than 1Pipe. However, with high write percentage, FaRM
latency skyrockets due to lock contention on hot keys and TXN
aborts due to inconsistent read version.

In Figure 14c, we alter the number of keys per TXN, and measure
total KV op/s with 512 processes. 95% of TXNs are read-only. 1Pipe
and NonTX are agnostic of TXN size because their throughputs are
only bounded by CPU processing and networkmessaging rate.With
a low write percentage (5%), FaRM/YCSB delivers 40% throughput
of 1Pipe with 2 KV ops per TXN, but the performance plummets
with larger TXN size, because TXN abort rate increases with the
number of keys in a TXN.

7.3.2 Independent General Transactions. Now we extend Dis-
tributed Atomic Operations (DAO, Sec.2.2.3) to two important
classes of distributed transactions: read-only snapshot transac-
tions [27] and independent transactions [51] (or called one-shot
transactions [56]) that involve multiple hosts but the input of each
host does not depend on the output of other hosts. The two most
frequent transactions in TPC-C benchmark (New-Order and Pay-
ment) [29] are independent transactions. The major difference be-
tween DAO and independent transactions is that the latter often
requires replication to ensure durability and fault tolerance. The
TXN initiator utilizes the method of Eris [51], which scatters op-
erations to all replicas of all shards in one reliable scattering. So,
each TXN can finish in one round-trip (actually two RTTs due to
Prepare phase). If a host fails, the other replicas of the same shard
reach quorum via traditional consensus.

We benchmark New-Order and Payment TXNs in TPC-C [29],
which constitute 90% of TPC-C workload. For simplicity, we do

not implement non-independent TXNs in TPC-C, which should
fall back to traditional concurrency control mechanisms. We use 4
warehouses which are stored in-memory with 3 replicas. Concur-
rency control and replication are implemented with a scattering
of commands sent to all shards and replicas, similar to Eris [51]
but replaces its central sequencer with timestamps. We assume
TXNs never abort. As shown in Figure 15a, two-phase locking (2PL)
and OCC do not scale, because each Payment TXN updates its
corresponding warehouse entry and each New-Order reads it [98],
leading to 4 hot entries. The throughput of OCC and 2PL reaches
peak at 256 and 64 processes, respectively. With more processes,
the throughput becomes lower [79]. In contrast, 1Pipe scales lin-
early with number of processes. With 512 processes, 1Pipe achieves
10.35M TXNs per second, which is 71% of a non-transactional base-
line system, 10x of lock and 17x of OCC.

Figure 15b shows TXN throughput under different simulated
packet loss rates. We fix process number to be 64. With 1Pipe,
although packet loss affects TXN latency (not measured in TPC-C,
but should be similar to Figure 9b), the impact on throughput is
insignificant. However, in 2PL and OCC commit, a locked object
cannot be released until the TXN completes, so, TXN throughput
under contention is inversely proportional to TXN latency. TXN
latency increases with packet loss rate because replicas wait for the
last retransmitted packet to maintain sequential log ordering.

Finally, we evaluate failure recovery of replicas by disconnecting
the physical link of a host. 1Pipe detects failure and removes the
replica in 181 ± 21𝜇s. The affected TXNs are aborted and retried,
with an average delay of 308 ± 122𝜇s. It is much faster than using
application heartbeats to detect failures, which takes milliseconds.
After the link reconnects, the replica synchronizes log from other
replicas in 25 ms.

7.3.3 Remote Data Structures. 1Pipe can remove ordering haz-
ards in remote data structure access (Sec.2.2.1). We implement a
distributed concurrent hash table that uses a linked list to store
key-value pairs (KVs) in the same hash bucket. The hash table is
sharded on 16 servers. Different from Sec.7.3.1 where servers pro-
cess KV ops, in this section, clients access the remote hash table
using RDMA one-sided read, write, and CAS. The baseline sys-
tem uses leader-follower replication. The workload has 16 parallel
clients and uniform keys.

As Figure 16 shows, without replication, 1Pipe improves per-
client KV insertion throughput to 1.9x because 1Pipe removes the
fence between writing KV pair and updating the pointer in hash

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang

10
-1

10
0

10
1

2 4 8 16 32 64 128 256 512

T
h
ro

u
g
h

p
u

t
(M

 t
x
n

/s
)

Number of Processes

1Pipe
Lock

OCC
NonTX

(a) Scalability.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

0 1e-6 1e-5 1e-4 1e-3 1e-2 2e-2 5e-2 1e-1

T
h
ro

u
g
h

p
u

t
(M

 t
x
n

/s
)

Packet Loss Probability

1Pipe
Lock

OCC
NonTX

(b) Resilience of packet loss.
Figure 15: TPC-C transaction benchmark.

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4

T
h

ro
u

g
h

p
u

t
(M

 o
p

/s
)

Number of Replicas

1Pipe/insert
base/insert

1Pipe/lookup
base/lookup

Figure 16: Per-client throughput of a repli-
cated remote hash table.

bucket. KV lookup throughput reduces by 10%, due to additional
reordering delay. If the hash table is replicated traditionally, a write
op is sent to the leader, which involves CPU software to replicate to
followers. With 3 replicas, 1Pipe improves KV insertion throughput
to 3.4x. In 1Pipe, all KV operations are ordered by timestamp, so all
replicas can serve lookup requests, and the throughput scales with
number of replicas. In contrast, with leader-follower replication, to
maintain serializability of lookups and updates, only the leader can
serve lookups.

7.3.4 Replication in Distributed Storage. We apply 1Pipe to a
distributed storage system, Ceph [96]. Ceph OSD uses a primary-
backup replication scheme, where the backups are also written
sequentially. With 3 replicas, a client waits for 3 disk writes and 6
network messages (3 RTTs) in sequence. Because 1Pipe supports
1-RTT replication in non-failure cases (Sec.2.2.2), the client can
write 3 replicas in parallel, thus the end-to-end write latency is
reduced to 1 disk write and 1 RTT. Experiment shows that in an
idle system with Intel DC S3700 SSDs, the latency of 4KB random
write reduces from 160 ± 54𝜇s to 58 ± 28𝜇s (64% reduction).

8 RELATEDWORK

Causal and totally ordered communication (CATOCS). Crit-
ics [25] and proponents [16, 94] of CATOCS have long discussed
the pros and cons of such a primitive. 1Pipe provides a scattering
primitive with restricted atomicity, and achieves scalability with
in-network computation that incurs little overhead, thus remov-
ing two criticisms (can’t say together and efficiency). Scattering
also enables atomic access to a portion (rather than all) of shards.
Although 1Pipe is not a panacea for ordering problems, e.g., it is
not sufficient to support serializable general transactions, it shows
effectiveness in applications in Sec.7.3.

There has been extensive research on total order broadcast [31].
One line of work leverages logically centralized coordination, e.g.,
centralized sequencers [18, 51, 54] or a token passed among senders
or receivers [36, 60, 78, 86]. As a result, it is challenging to scale
the system. Another line of work buffers messages at receivers
and builds a causality graph at receivers [63, 84], merges streams
deterministically or achieves agreement among receivers [17, 23,
53, 82]. This causes extra delay and network bandwidth overhead.
A third line of work assumes a synchronous network [64], but lossy
links and bad clocks with high skew violate correctness. In 1Pipe,
such components will slow down the whole system but correctness

is preserved. In 1Pipe, such components should be detected, and
affected hosts can use healthy nodes as proxy, where timestamps
are assigned at the proxy.

A fourth line of work, tree-based algorithms, addresses the trade-
off between efficiency and scalability [87]. At each non-leaf node,
multiple ordered streams of packets are merged into one ordered
stream, called deterministic merge [7, 46]. This usage of timestamp
and ordering is similar to 1Pipe while applied to other fields such
as network switches [49], multi-core processors [55], and sensor
networks [22]. However, it is not practical to implement determin-
istic merge in commodity network switches. First, switches in data
centers have small per-port buffer size [14]. Second, commodity
switches cannot reorder packets in priority queues according to
per-packet metadata [52, 92].
Network and system co-design. Recent years witness a trend
of co-designing distributed systems with programmable network
switches. Mostly Ordered Multicast [85] and NO-Paxos [68] use a
switch as a centralized sequencer or serialization point to achieve
totally ordered broadcast. Different from broadcast, 1Pipe provides
a scattering primitive and a scalable implementation. Eris [51]
proposes in-network concurrency control using switch as a cen-
tralized sequencer. NetChain [52], NetLock [99], NetPaxos [30],
and DAIET [88] offload important distributed middlewares to pro-
grammable switches. Omnisequencing [74] finds out that DCN
topology can provide causal (but not total order) message delivery.

9 CONCLUSION
We propose a causal and total order communication abstraction,
1Pipe, that delivers messages in sender’s clock time order with
restricted failure atomicity. 1Pipe achieves scalability and efficiency
by utilizing programmable data center networks to separate aggre-
gating order information from forwarding data packets. 1Pipe can
simplify and accelerate many applications, and we expect future
work to explore more. One limitation of 1Pipe is that it did not
consider Byzantine failure, and we leave the security problems to
future work.

ACKNOWLEDGEMENTS
We thank Cheng Li, Tianyi Cui, and Zhenyuan Ruan for the techni-
cal discussions. We thank our shepherd, Nathan Bronson, and other
anonymous reviewers for their valuable feedback and comments.

1Pipe: Scalable Total Order Communication in Data Center Networks SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] [n. d.]. Arista 7060CX-32 and 7260CX-64. ([n. d.]). https://www.arista.com/en/

products/7060x-series.
[2] [n. d.]. Arista EOS. ([n. d.]). https://www.arista.com/en/products/eos.
[3] [n. d.]. Broadcom Tomahawk. ([n. d.]). https://www.broadcom.com/products/

ethernet-connectivity/switching/strataxgs/bcm56960-series.
[4] [n. d.]. Cavium XPliant Ethernet switch product family. ([n. d.]). http://www.

cavium.com/XPliant-Ethernet-Switch-Product-Family.html.
[5] [n. d.]. etcd: A distributed, reliable key-value store for the most critical data of

a distributed system. ([n. d.]). https://etcd.io
[6] 2013. Highly Accurate Time Synchronization with ConnectX-3 and TimeKeeper.

(2013). https://www.mellanox.com/related-docs/whitepapers/WP_Highly_
Accurate_Time_Synchronization.pdf.

[7] Marcos Kawazoe Aguilera and Robert E Strom. 2000. Efficient atomic broad-
cast using deterministic merge. In Proceedings of the nineteenth annual ACM
symposium on Principles of distributed computing. ACM, 209–218.

[8] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,
Commodity Data Center Network Architecture. In Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication (SIGCOMM ’08). Association
for Computing Machinery, New York, NY, USA, 63–74. https://doi.org/10.1145/
1402958.1402967

[9] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus,
Rong Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014 ACM conference on
SIGCOMM. 503–514.

[10] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 conference.
63–74.

[11] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-
center transport. ACM SIGCOMM Computer Communication Review 43, 4 (2013),
435–446.

[12] Infiniband Trade Association et al. [n. d.]. RoCEv2, September 2014. ([n. d.]).
[13] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload analysis of a large-scale key-value store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on
Measurement and Modeling of Computer Systems. 53–64.

[14] Wei Bai, Kai Chen, Shuihai Hu, Kun Tan, and Yongqiang Xiong. 2017. Congestion
Control for High-speed Extremely Shallow-buffered Datacenter Networks. In
Proceedings of the First Asia-Pacific Workshop on Networking. ACM, 29–35.

[15] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and Yongqiang Xiong. 2020. One More
Config is Enough: Saving (DC) TCP for High-speed Extremely Shallow-buffered
Datacenters. In IEEE INFOCOM. 2007.

[16] Ken Birman. 1994. A response to Cheriton and Skeen’s criticism of causal and
totally ordered communication. ACM SIGOPS Operating Systems Review 28, 1
(1994), 11–21.

[17] Ken Birman and Thomas Joseph. 1987. Exploiting virtual synchrony in dis-
tributed systems. In Proceedings of the eleventh ACM Symposium on Operating
systems principles. 123–138.

[18] Kenneth Birman, Andre Schiper, and Pat Stephenson. 1991. Lightweight causal
and atomic group multicast. ACM Transactions on Computer Systems (TOCS) 9,
3 (1991), 272–314.

[19] Kenneth P Birman, Amr El Abbadi, Wally Dietrich, Thomas A Joseph, and
Thomas Raeuchle. 1984. An overview of the ISIS project. Technical Report.
Cornell University.

[20] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. 2014.
P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[21] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu, Lihua Yuan,
Yixin Zheng, Haitao Wu, Yongqiang Xiong, and Dave Maltz. 2013. Per-packet
load-balanced, low-latency routing for clos-based data center networks. In
Proceedings of the ninth ACM conference on Emerging networking experiments
and technologies. 49–60.

[22] Suchetana Chakraborty, Sandip Chakraborty, Sukumar Nandi, and Sushanta
Karmakar. 2011. A reliable and total order tree based broadcast in wireless
sensor network. In Computer and Communication Technology (ICCCT), 2011 2nd
International Conference on. IEEE, 618–623.

[23] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM) 43, 2 (1996), 225–267.

[24] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer Systems
(TOCS) 3, 1 (1985), 63–75.

[25] David R Cheriton and Dale Skeen. 1994. Understanding the limitations of causally
and totally ordered communication. Vol. 27. ACM.

[26] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. ACM, 143–154.

[27] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed
database. ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 8.

[28] Kendall Correll, Nick Barendt, and Michael Branicky. 2005. Design consid-
erations for software only implementations of the IEEE 1588 precision time
protocol. In Conference on IEEE, Vol. 1588. 11–15.

[29] THE TRANSACTION PROCESSING COUNCIL. [n. d.]. TPC-C Benchmark V5.
([n. d.]). http://www.tpc.org/tpcc/

[30] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. Netpaxos: Consensus at network speed. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research. 1–7.

[31] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR)
36, 4 (2004), 372–421.

[32] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. 2014. YCSB+ T:
Benchmarking web-scale transactional databases. In Data Engineering Work-
shops (ICDEW), 2014 IEEE 30th International Conference on. IEEE, 223–230.

[33] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella. 2013.
On the impact of packet spraying in data center networks. In 2013 Proceedings
IEEE INFOCOM. IEEE, 2130–2138.

[34] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel
Castro. 2014. FaRM: Fast remote memory. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation. 401–414.

[35] Aleksandar Dragojević, DushyanthNarayanan, Edmund BNightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, andMiguel Castro. 2015. No compro-
mises: distributed transactions with consistency, availability, and performance.
In Proceedings of the 25th symposium on operating systems principles. ACM,
54–70.

[36] Richard Ekwall, André Schiper, and Péter Urbán. 2004. Token-based atomic
broadcast using unreliable failure detectors. In Reliable Distributed Systems, 2004.
Proceedings of the 23rd IEEE International Symposium on. IEEE, 52–65.

[37] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: Smartnics in the public cloud.
In 15th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18). 51–66.

[38] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM)
32, 2 (1985), 374–382.

[39] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. 2015. phost: Distributed near-optimal datacenter
transport over commodity network fabric. In Proceedings of the 11th ACM Con-
ference on Emerging Networking Experiments and Technologies. 1–12.

[40] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-
blum, and Amin Vahdat. 2018. Exploiting a Natural Network Effect for Scalable,
Fine-grained Clock Synchronization. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). USENIX Association, 81–94.

[41] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. 1990. Memory consistency and event ordering in
scalable shared-memory multiprocessors. Vol. 18. ACM.

[42] Albert Greenberg. 2015. SDN for the Cloud. In Keynote in the 2015 ACM Confer-
ence on Special Interest Group on Data Communication.

[43] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: a scalable and flexible data center network. In ACM
SIGCOMM computer communication review, Vol. 39. ACM, 51–62.

[44] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. 2015. Pingmesh: A
large-scale system for data center network latency measurement and analysis.
ACM SIGCOMM Computer Communication Review 45, 4 (2015), 139–152.

[45] Vladimir Gurevich. 2017. Programmable Data Plane at Terabit Speeds. P4
Workshop (2017).

[46] Vassos Hadzilacos and Sam Toueg. 1994. A modular approach to fault-tolerant
broadcasts and related problems. Technical Report. Cornell University.

[47] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based load balancing for fast datacenter networks.
ACM SIGCOMM Computer Communication Review 45, 4 (2015), 465–478.

[48] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai Chen,
Kun Tan, and Yi Wang. 2020. Aeolus: A Building Block for Proactive Transport
in Datacenters. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication. 422–434.

[49] Ofer Iny. 2005. Method and system for switching packets. US Patent No.
US7525995B2 (2005).

https://www.arista.com/en/products/7060x-series
https://www.arista.com/en/products/7060x-series
https://www.arista.com/en/products/eos
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
https://etcd.io
https://www.mellanox.com/related-docs/whitepapers/WP_Highly_Accurate_Time_Synchronization.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_Highly_Accurate_Time_Synchronization.pdf
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402967
http://www.tpc.org/tpcc/

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Bojie Li, Gefei Zuo, Wei Bai, and Lintao Zhang

[50] Van Jacobson, Robert Braden, and David Borman. 1992. TCP extensions for
high performance. (1992).

[51] Ellis Michael Jialin Li and Dan R. K. Ports. 2017. Eris: Coordination-Free Con-
sistent Transactions Using In-Network Concurrency Control. In Proceedings of
the 26th Symposium on Operating Systems Principles. ACM.

[52] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordi-
nation. In 15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, 35–49.

[53] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. 2011. Zab: High-
performance broadcast for primary-backup systems. In 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems & Networks (DSN). IEEE, 245–256.

[54] M Frans Kaashoek and Andrew S Tanenbaum. 1996. An evaluation of the
Amoeba group communication system. In Proceedings of 16th International
Conference on Distributed Computing Systems. IEEE, 436–447.

[55] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos,
and Timothy Roscoe. 2016. Machine-Aware Atomic Broadcast Trees for Multi-
cores.. In OSDI, Vol. 16. 33–48.

[56] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, et al. 2008. H-store: a high-performance, distributed main memory
transaction processing system. Proceedings of the VLDB Endowment 1, 2 (2008),
1496–1499.

[57] Anuj KaliaMichael Kaminsky andDavid GAndersen. 2016. Design guidelines for
high performance RDMA systems. In 2016 USENIX Annual Technical Conference.
437.

[58] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes.
In Proceedings of the Symposium on SDN Research. 1–12.

[59] Antoine Kaufmann, SImon Peter, Naveen Kr Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High performance packet processing with flexnic.
In Proceedings of the Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. 67–81.

[60] Jongsung Kim and Cheeha Kim. 1997. A total ordering protocol using a dynamic
token-passing scheme. Distributed Systems Engineering 4, 2 (1997), 87.

[61] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian Wu,
Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, et al. 2020. Swift: Delay is Simple and Effective for Congestion
Control in the Datacenter. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 514–528.

[62] Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[63] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (1978), 558–565.

[64] Leslie Lamport. 1984. Using time instead of timeout for fault-tolerant distributed
systems. ACM Transactions on Programming Languages and Systems (TOPLAS)
6, 2 (1984), 254–280.

[65] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer
Systems (TOCS) 16, 2 (1998), 133–169.

[66] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon. 2016.
Globally synchronized time via datacenter networks. In Proceedings of the 2016
conference on ACM SIGCOMM 2016 Conference. ACM, 454–467.

[67] Charles E Leiserson. 1985. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE transactions on Computers 100, 10 (1985), 892–901.

[68] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and Dan RK Ports.
2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network
Ordering.. In OSDI. 467–483.

[69] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel, Peter Hochschild,
Dave Platt, Simon Sabato, Minlan Yu, Nandita Dukkipati, Prashant Chandra,
et al. 2020. Sundial: Fault-tolerant Clock Synchronization for Datacenters. In
14th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 20). 1171–1186.

[70] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
high precision congestion control. In Proceedings of the ACM Special Interest
Group on Data Communication. 44–58.

[71] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou, Tong Yuan, Haitao
Wu, Yongqiang Xiong, Rui Gao, and Yongguang Zhang. 2011. ServerSwitch: A
Programmable and High Performance Platform for Data Center Networks.. In
Nsdi, Vol. 11. 2–2.

[72] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd.
2016. The SNOW Theorem and Latency-Optimal Read-Only Transactions.. In
OSDI. 135–150.

[73] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd. 2020. Performance-Optimal Read-
Only Transactions. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). 333–349.

[74] Ellis Michael and Dan RK Ports. 2018. Towards causal datacenter networks. In
Proceedings of the 5th Workshop on the Principles and Practice of Consistency for
Distributed Data. 1–4.

[75] Radhika Mittal, Nandita Dukkipati, Emily Blem, HassanWassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al. 2015. TIMELY:
RTT-based congestion control for the datacenter. In ACM SIGCOMM Computer
Communication Review, Vol. 45. ACM, 537–550.

[76] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Kr-
ishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting network
support for RDMA. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 313–326.

[77] Adam Morrison and Yehuda Afek. 2013. Fast concurrent queues for x86 proces-
sors. In ACM SIGPLAN Notices, Vol. 48. ACM, 103–112.

[78] Louise E. Moser, P Michael Melliar-Smith, Deborah A. Agarwal, Ravi K. Budhia,
and Colleen A. Lingley-Papadopoulos. 1996. Totem: A fault-tolerant multicast
group communication system. Commun. ACM 39, 4 (1996), 54–63.

[79] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting
more concurrency from distributed transactions. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14). 479–494.

[80] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm.. In USENIX Annual Technical Conference. 305–319.

[81] Seo Jin Park and John Ousterhout. 2019. Exploiting commutativity for practical
fast replication. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’19). 47–64.

[82] Fernando Pedone and André Schiper. 1998. Optimistic atomic broadcast. In
International Symposium on Distributed Computing. Springer, 318–332.

[83] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2015. Fastpass: A centralized zero-queue datacenter network. ACM
SIGCOMM Computer Communication Review 44, 4 (2015), 307–318.

[84] Larry L Peterson, Nick C Buchholz, and Richard D Schlichting. 1989. Preserving
and using context information in interprocess communication. ACM Transac-
tions on Computer Systems (TOCS) 7, 3 (1989), 217–246.

[85] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma, and Arvind Krishna-
murthy. 2015. Designing Distributed Systems Using Approximate Synchrony
in Data Center Networks.. In NSDI. 43–57.

[86] B Rajagopalan and Philip K McKinley. 1989. A token-based protocol for reli-
able, ordered multicast communication. In Reliable Distributed Systems, 1989.,
Proceedings of the Eighth Symposium on. IEEE, 84–93.

[87] Luis Rodrigues, Rachid Guerraoui, and André Schiper. 1998. Scalable atomic
multicast. In Computer Communications and Networks, 1998. Proceedings. 7th
International Conference on. IEEE, 840–847.

[88] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-network computation is a dumb idea whose time has come. In
Proceedings of the 16th ACM Workshop on Hot Topics in Networks. 150–156.

[89] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O Myreen. 2010. x86-TSO: a rigorous and usable programmer’s model for
x86 multiprocessors. Commun. ACM 53, 7 (2010), 89–97.

[90] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopou-
los, Aleksandar Dragojević, Dushyanth Narayanan, and Miguel Castro. 2019.
Fast general distributed transactions with opacity. In Proceedings of the 2019
International Conference on Management of Data. 433–448.

[91] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. 2015.
Jupiter rising: A decade of clos topologies and centralized control in google’s
datacenter network. ACM SIGCOMM computer communication review 45, 4
(2015), 183–197.

[92] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate.
In Proceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference. ACM,
44–57.

[93] Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying read-
copy-update in a logic for weak memory. In ACM SIGPLAN Notices, Vol. 50.
ACM, 110–120.

[94] Robbert van Renesse. 1994. Why bother with CATOCS? ACM SIGOPS Operating
Systems Review 28, 1 (1994), 22–27.

[95] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let it flow: Resilient asymmetric load balancing with flowlet switching. In
14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17). 407–420.

[96] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos
Maltzahn. 2006. Ceph: A scalable, high-performance distributed file system. In
Proceedings of the 7th symposium on Operating systems design and implementa-
tion. 307–320.

[97] Jisoo Yang, Dave B Minturn, and Frank Hady. 2012. When poll is better than
interrupt.. In FAST, Vol. 12. 3–3.

[98] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the abyss: An evaluation of concurrency control

1Pipe: Scalable Total Order Communication in Data Center Networks SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

with one thousand cores. Proceedings of the VLDB Endowment 8, 3 (2014),
209–220.

[99] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and
Xin Jin. 2020. Netlock: Fast, centralized lock management using programmable
switches. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication. 126–138.

[100] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury. 2017.
Resilient datacenter load balancing in the wild. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication. 253–266.

[101] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments.
ACM SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

[102] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind
Krishnamurthy, and Thomas Anderson. 2017. Understanding and mitigating
packet corruption in data center networks. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. 362–375.

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.
Correctness Analysis. In reliable 1Pipe, a scattering 𝑀 from
sender 𝑆 to receivers 𝑅𝑖 with timestamp 𝑇 should be delivered if
and only if the 𝑆 does not fail before 𝑇 and 𝑆 has received all ACKs
from 𝑅𝑖 . If 𝑆 fails before 𝑇 (i.e., the failure timestamp of 𝑆 is less
than 𝑇), then𝑀 is not committed (or the commit message has not
propagated to any receiver, which is regarded as not committed). If
any receiver 𝑅𝑖 fails before receiving the prepare message of𝑀 or
sending the ACK message, 𝑆 should recall𝑀 .

Now, we analyze the behavior of message𝑀 : 𝑆 → 𝑅 under each
type of failure. A process has both sender and receiver roles, and
they are considered separately.
• Packet loss on a fair-loss link: deliver because 2PC retransmits
packets.

• 𝑅 fails before sending ACK in Prepare phase: discard according
to Recall step.

• 𝑅 fails after sending ACK in Prepare phase: The message is in
𝑅’s receive buffer. We only ensure atomicity in a fail-recover
model because recording the last message that 𝑅 has delivered is
impossible. The controller records failure timestamps of senders
and undeliverable recall messages, so that recovered receivers

can deliver or discard messages consistently in each scattering.
If 𝑅 fails permanently, atomicity is violated.

• 𝑆 fails before sending commit timestamp 𝑇 : discard according
to Discard step. For example, when 𝑆 fails while executing Re-
call step of 𝑀 due to previous failure of a receiver, its commit
timestamp𝑇 must be lower than𝑀 ’s timestamp, so all receivers
would discard𝑀 due to failure of 𝑆 .

• 𝑆 fails after sending commit timestamp 𝑇 : deliver if and only
if the failure timestamp 𝑇 ′ of 𝑆 is larger or equal to 𝑇 . Failure
timestamp is determined by controller, which ensures that 𝑆 has
committed𝑇 ′ but no message after𝑇 ′ is delivered. Controller ob-
tains𝑇 ′ by gathering the maximum failure timestamp from a cut
in a routing graph consisting of healthy switches that separates
𝑆 and all receivers. If the data center has separate production
and management networks, and assuming they do not fail simul-
taneously, such a cut can always be found. Otherwise, a network
partition may lead to atomicity violation.

• The receiver 𝑅′ of another message 𝑀 ′ in the same scattering
fails before sending ACK in Prepare phase: because the ACK is
not received, discard according to Recall step.

• The receiver 𝑅′ of another message 𝑀 ′ in the same scattering
fails after sending ACK in Prepare phase: deliver according to
2PC.

• The network path between 𝑆 and 𝑅 fails (e.g., due to routing prob-
lem), but 𝑆 and 𝑅 are reachable from the controller: controller
forwards messages between 𝑆 and 𝑅.

• The network path between 𝑆 and 𝑅 fails, and 𝑆 or 𝑅 is unreach-
able from the controller: the unreachable process is considered
as failed. For example, if a host or the only network link from a
host fails, all processes on it are disconnected from the network,
so they are considered to fail.

• The network path to 𝑅 fails after 𝑅 receives commit barrier 𝑇 : 𝑇
is already delivered to 𝑅.

• The network path to 𝑅 fails before 𝑅 receives commit barrier
𝑇 : deliver after 𝑅 recovers according to Receiver Recovery. If 𝑅
fails permanently, atomicity is violated.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Abstractions of 1Pipe
	2.2 Use Cases of 1Pipe

	3 Background
	3.1 Data Center Network
	3.2 Programmable Switches

	4 Best Effort 1Pipe
	4.1 Message and Barrier Timestamp
	4.2 Beacons on Idle Links

	5 Reliable 1Pipe
	5.1 Handling Packet Loss
	5.2 Handling Failure

	6 Implementation
	6.1 Processing on End Hosts
	6.2 In-Network Processing

	7 Evaluation
	7.1 Methodology
	7.2 Microbenchmarks
	7.3 Applications

	8 Related Work
	9 Conclusion
	References

